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Abstract 

Our aim in this study is to investigate the value of two variance components and variance 

jumps in the pricing of VIX derivatives. In an attempt to significantly reduce the 

computational burden of the empirical estimation, we propose an easily implemented and 

efficient numerical technique for the pricing of VIX derivatives under the affine framework. 

Our empirical findings provide support for the use of two-variance component models as the 

means of capturing the fickle term structure of VIX derivatives; however, specifying a second 

variance component does not eliminate the need for variance jumps, since they are found to 

be vital for pricing short-term contracts and also effective when included in the long-run 

variance component. Our results are robust to the effects of the recent financial crisis period. 
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1 Introduction 

For both academics and practitioners alike, volatility is a central concept in the pricing of 

derivatives, with the extant literature clearly showing the variation over time in the volatility 

of equity returns. Hence, one of the most crucial steps in derivative pricing is that of 

identifying an effective way of specifying the volatility process. Balancing the tradeoff 

between complexity and tractability, the seminal work of Heston (1993) proposed a stochastic 

volatility (SV) model for capturing the stylized facts of the leverage effect and mean 

reversion of volatility. More importantly, Heston also provided a closed-form solution for the 

pricing of equity options.  

However, numerous empirical studies have found strong evidence to show that the SV 

model is misspecified, even when a jump component is considered in the returns.1 Thus, in an 

attempt to remedy the Heston SV model, subsequent studies have proposed stochastic volatility 

models which either incorporate variance jumps or specify the second variance component;2 the 

aim of the former is to capture large volatility movements, whilst the latter allows flexibility in 

the volatility term structure. 

Both approaches have been extensively examined in recent empirical works, with the 

improvements on the SV model being revealed through the use of historical returns and/or 

option prices of equity assets. Alizadeh, Brandt and Diebold (2002) found that short- and 

long-run volatility components were required to respectively explain the volatility of variance and 

volatility persistence. Examining two independent volatility components, Adrian and Rosenberg 

(2008) concluded that short- and long-run components respectively captured market skewness 

risk and business cycle risk.  

                                                 
1  See, for example, Bakshi, Cao and Chen (1997), Andersen, Benzoni and Lund (2002), Pan (2002) and Chernov, 
Gallant, Ghysels and Tauchen (2003). 
2  Bates (1996) extended the work of Heston (1993) by adding a jump component into the returns to generate the 
large price movements that are typical of a turbulent period. Bates (2000) subsequently extended the model by 
specifying an additional variance factor, whilst Duffie, Pan and Singleton (2000) introduced models with correlated 
jumps in the returns and variance under an affine framework. 
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Eraker, Johannes and Polson (2003) provided strong support for specifications with jumps 

in variance for a time-series analysis, such as the fitting of returns data, whilst Christoffersen, 

Heston and Jacobs (2009) showed that models with no second variance factor provided 

insufficient flexibility to explain the independent fluctuations in the level and slope of 

option-implied volatility. Li and Zhang (2010) also found the two-variance specification to be a 

promising approach for fitting option prices.3  

Eraker (2004) noted that although the incorporation of jumps in returns and variance 

effectively described options and returns, the jump components added little explanatory power 

on the fitting options. Having identified strong evidence of the presence of jumps in variance, 

Broadie, Chernov and Johannes (2007) concluded that jumps in both returns and variance were 

crucial components of option pricing. Overall, the prior empirical works appear to have 

convincingly identified the value of the second variance component and variance jumps in the 

pricing of derivatives.  

Over recent decades, the Chicago Board Options Exchange (CBOE) has been active in 

launching VIX futures and options in order to meet the enormous demand for volatility hedging 

instruments, with the open interest and trading volume in both products having grown rapidly.4 

VIX derivatives have essentially become the most prominent volatility-related product to date 

within the derivative markets, which raises the question of whether the most effective models in 

S&P 500 index option pricing also perform well in the pricing of VIX derivatives. We therefore 

set out in this study to provide a comprehensive discussion on the respective roles of the second 

variance component and variance jumps in VIX derivative pricing.5  

                                                 
3  Specifically, Eraker et al. (2003) support jumps in both returns and variance. The impact of jumps in returns is 
transient, whereas the large volatility movement generated by variance jumps is persistent.  
4  The CBOE first published the volatility index (VIX) in 1993, calculated from a series of at-the- money S&P 
100 index options. In 2003, it updated the VIX definition by a model-free method using the market prices of 
S&P 500 index options to estimate the expected volatility of the S&P 500 index during the following 
30-calendar-day period. As regards VIX derivatives, VIX futures have been traded since 2004, whilst VIX 
options were introduced in 2006. See Carr and Lee (2009) for an overview of the volatility derivative markets. 
5  Although some studies have attempted to jointly estimate both the S&P 500 index options and VIX derivatives 
in order to identify the risk premia or the joint pricing kernel (see Amengual and Xiu, 2012; Bardgett, Gouier and 
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According to the definition provided by the CBOE, the VIX is constructed based upon a 

portfolio of all out-of-the-money S&P 500 index options with a time to maturity of 30 

calendar days. Given the model specifications discussed above, the VIX is equivalent to a 

square root function of the instantaneous variance, which increases the difficulty of pricing its 

derivatives. In an attempt to explain the prior empirical works, we propose an innovative 

approach for the valuing of VIX derivatives under the affine framework introduced by Duffie 

et al. (2000), with our proposed technique being both easily implemented and numerically 

efficient. 

Our empirical results reveal that the second variance component clearly plays an important 

role in the pricing of VIX derivatives. The empirical term structure of VIX futures prices 

usually exhibits a hump-shaped pattern, with the non-parallel shift for a non-trivial proportion 

of trading days. We find that models with no second variance component are incapable of 

capturing these common features for the term structure, even when jumps in returns and 

variance are specified; therefore, the incorporation of the second variance component as the 

means of simultaneously capturing the short- and long-run fluctuations remains a promising 

approach to the fitting of VIX derivatives prices. Nevertheless, the addition of variance jumps 

in the Heston SV model with jumps in returns may not significantly improve the pricing of 

VIX derivatives.  

Given that a VIX derivative is a European-style contract, the derivative price is 

dependent only upon the terminal VIX level; however, the mean-reversion characteristic of 

volatility may mitigate the impacts generated by variance jumps prior to the expiry date. This 

mitigation does not appear in the pricing of index options, essentially because a jump in 

variance has an immediate effect, namely, a change in the S&P 500 index level, even if the 
                                                                                                                                                        

Leippold, 2013; Song and Xiu, 2014), joint estimation is not the focus in the present study, for two reasons. Firstly, 
since the trading targets for the two derivatives differ, this gives rise to the further issue of the avoidance of the 
impact of different types of trading behavior in both markets. Secondly, the estimation results on both markets are 
quite mixed, depending on their weights. Since the empirical performance of these models in the index option 
market has already been extensively explored, we focus on investigations into the VIX derivatives market only. 
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terminal volatility returns to its pre-jump level and there is no mean reversion in the index 

itself. The second variance component does not, however, eliminate the need for variance 

jumps. 

Our empirical results show that the pricing performance arising from the incorporation 

of variance jumps is comparable to that of adding the second variance component when 

considering only short-term contracts, for two reasons: firstly, the impacts of volatility jumps 

at expiry may not be fully mitigated by the mean-reversion effects over a short period; and 

secondly, the term structure of VIX derivatives is less complicated over a small range, such 

that the additional variance component has little chance of exhibiting its strength.  

As a result, a crucial issue under the two-variance framework is where to jump, and we 

find that specifying variance jumps in the long-run component can significantly improve the 

fitting of VIX option prices; given that the mean-reversion speed of the long-run variance 

component is slower than that of the short-run variance component, the mitigation caused by 

mean reversion is somewhat limited.  

Whilst recent empirical works on the pricing of VIX derivatives, such as Branger and 

Völkert (2012) and Mencía and Sentana (2013), have attempted to determine the most 

suitable model for price fitting, we explore the respective values of two existing approaches 

adopted in the index options literature. Overall, our empirical results are consistent with those 

reported on variance jumps by Mencía and Sentana (2013), who found that adding jumps into 

the VIX logarithm yielded a minor pricing improvement, and Branger and Völkert (2012), 

who found that variance jumps mainly influenced short-term contracts. We go on to further 

explain why the addition of variance jumps may provide superior performance and analyze 

which variance component should incorporate the jump component.  

Unlike Mencía and Sentana (2013), we adopt a consistent framework to provide a link 

with the extant index options literature and overcome the difficulties involved in the valuation 

of VIX derivatives. As compared to Branger and Völkert (2012), we add further discussion on 
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the two-variance framework and find that the second variance component does indeed play a 

crucial role in the pricing of VIX derivatives.6 

The remainder of this paper is organized as follows. The model setup and proposed 

closed-form approximation for VIX derivative prices are introduced in Section 2, followed in 

Section 3 by a description of the data and methodology used for our empirical analyses. Our 

empirical results and in-depth discussion are respectively presented in Sections 4 and 5, with 

robustness checks being provided in Section 6. Finally, the conclusions drawn from this study 

are presented in Section 7 

2 The Model 

2.1  Model Specification 

We consider the class of affine SV models introduced by Duffie et al. (2000), with the 

risk-neutral joint process of log price and its variance being specified under this framework as 

an affine structure balancing the tradeoff between the complexity and tractability of the 

valuation of financial derivatives. Affine SV models, including the Heston (1993) SV model, 

the Bates (1996) SV model with price jumps (SVJ) and numerous extended SV models, have 

been widely used in the option pricing literature, with two particular alternative extensions 

being the addition of variance jumps (Duffie et al., 2000) and specifying the second variance 

component (Bates, 2000; Christoffersen et al., 2009); we provide comprehensive investigations 

of both approaches. 

We assume that the level of the SPX at time t, denoted by Pt , involves the following 

risk-neutral dynamic: 

݀ ௧ܲ

௧ܲ
	ൌ ሺݎ െ ݐሻ݀ݍ ൅ ඥ ଵܸ,௧݀ ଵܹ,௧ ൅ ඥ ଶܸ,௧݀ ଶܹ,௧ ൅ ሺ݀ܬ ௧ܰ െ  ሺ1ሻ													ሻ,ݐ݀ߤ̅ߣ

                                                 
6  Although Branger and Völkert (2012) adopted a consistent framework, their empirical estimations excluded 
the jump component in prices so as to reduce the number of estimated parameters. However, since many studies, 
such as Todorov and Tauchen (2011), have concluded that the addition of variance jumps does not eliminate the 
need for price jumps, in the present study we simultaneously consider jumps in both returns and variance. 



7 

݀ ଵܸ,௧ ൌ ଵߠଵ൫ߢ െ ଵܸ,௧൯݀ݐ ൅ ଵඥߪ ଵܸ,௧݀ ଵܹ,௧
௩ ൅ ௩݀ߦ ௧ܰ	,																																							ሺ2ሻ 

݀ ଶܸ,௧ ൌ ଶߠଶ൫ߢ െ ଶܸ,௧൯݀ݐ ൅ ଶඥߪ ଶܸ,௧݀ ଶܹ,௧
௩ 	,																																																							ሺ3ሻ 

Cov൫݀ ௝ܹ,௧, ݀ ௝ܹ,௧
௩ ൯ ൌ ,ݐ௝݀ߩ ݆ ൌ 1, 2,																																																											ሺ4ሻ 

and  

Cov൫݀ ௜ܹ,௧, ݀ ௝ܹ,௧
௩ ൯ ൌ Cov൫݀ ௜ܹ,௧, ݀ ௝ܹ,௧൯ ൌ Cov൫݀ ௜ܹ,௧

௩ , ݀ ௝ܹ,௧
௩ ൯ ൌ 0, ݅ ് ݆,			ሺ5ሻ 

where ݎ  refers to the risk-free rate; ݍ  is the continuous dividend yield; ଵܸ,௧  and ଶܸ,௧ 

capture the two types of instantaneous variances at time t; ߢ௝ and ߠ௝ respectively denote the 

mean-reversion speed and the long-run mean level of ௝ܸ,௧; ߪ௝ refers to the volatility of 

variance ݆; ௝ܹ,௧ and ௝ܹ,௧
௩  are Wiener processes with the correlation structure specified in 

Equations (4) and (5); ௧ܰ is a Poisson process with constant intensity ߦ ;ߣ௣ and ߦ௩ are the 

respective random jump sizes in the SPX and its variance; and ܬ ≡ eక
೛
െ 1 is the random 

percentage jump in SPX with mean ̅ߤ. As regards the correlated jump sizes, we follow the 

extant literature to assume that ߦ௩ is exponentially distributed with positive mean ߤ௩, and 

that ߦ௣|ߦ௩ is normally distributed with mean ߤ௣ ൅  ௣ଶ.7ߪ ௩ and varianceߦ	௃ߩ

We make no attempt in the present study to create a new valuation model, but instead, 

set up our model in a way which nests two alternative extensions of the Bates (1996) SVJ 

model from within the literature. Firstly, we can dispose of Equation (3) by setting 

ଶܸ,௧ ൌ ଶߠ ൌ 0 in order to obtain the SV model with correlated jumps (SVCJ model) proposed 

by Duffie et al. (2000). Alternatively, by removing the variance jump component, ߦ௩݀ ௧ܰ, 

which is achieved by setting ߤ௩ ൌ 0, we can then obtain the two-variance SV model with 

price jumps (2-SVJ model) proposed by Bates (2000). If ߣ ൌ 0, then the SVJ and the 2-SVJ 

are respectively reduced to the Heston (1993) SV model and the Christoffersen et al. (2009) 

two-variance SV (2-SV) model.8 

                                                 

7 It then follows that ̅ߤ ൌ ॱ௧
ℚൣeక

೛
െ 1൧ ൌ ॱ௧

ℚሾॱ௧
ℚൣeక

೛
หߦ௝
௩ሿሿ െ 1 ൌ exp ቄߤ௣ ൅

ఙ೛
మ

ଶ
ቅ ൫1 െ ௩൯ൗߤ௃ߩ െ 1. 

8 This result is consistent with the finding of Todorov and Tauchen (2011), who noted that jumps in price and 
variance occur simultaneously and exhibit highly negative dependency. Our proposed model can also be reduced 
to the Sepp (2008) stochastic volatility with variance jumps (SVVJ) model by setting ଶܸ,௧ ൌ ଶߠ ൌ ௣ߤ ൌ 0, and 
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Although the central tendency model of Duffie et al. (2000) does offer an alternative 

way of specifying the second variance component, Branger and Völkert (2012) demonstrated 

its minor influence on VIX options, since the model does not provide flexibility for the 

volatility of variance. In addition, for a technical reason, the theoretical price of VIX 

derivatives under the central tendency model does not offer analytical tractability and 

requires further numerical calculation for an effective solution; thus, this type of model is not 

taken into consideration in our study. 

2.2  The CBOE VIX and Its Derivatives 

The squared VIX index, introduced by the CBOE in 2003, is defined as a portfolio of all 

out-of-the-money S&P 500 index options with time-to-maturity of 30 calendar days: 

൬
௧ܺܫܸ
100

൰
ଶ

≡
2݁௥௱௧

ݐ߂
൥න ௧ܲ

ௌ௉௑ሺܭ, ,ݐ߂ ሻݎ
ଶܭ ܭ݀

ௌ೟௘ೝ೩೟

଴
൅ න

௧ܥ
ௌ௉௑ሺܭ, ,ݐ߂ ሻݎ

ଶܭ ܭ݀
ஶ

ௌ೟௘ೝ೩೟
൩,				ሺ6ሻ 

where ݐ߂ ൌ30/365, and ௧ܲ
ௌ௉௑ሺܭ, ߬, ௧ܥ ሻ andݎ

ௌ௉௑ሺܭ, ߬,  ሻ are the respective values of putݎ

and call options traded at time ݐ with strike price ܭ, time to maturity ߬, and discount rate 

 Applying the spanning formula of Bakshi and Madan (2000), the VIX squared under 9.ݎ

Equations (1)–(5) can be derived as:  

൬
௧ܺܫܸ
100

൰
ଶ

ൌ
2
ݐ߂
ॱ௧
ℚ ൤െ ln ൬ ௧ܲା௱௧

௧ܲ݁௥௱௧
൰൨ ൌ ܣ ൅ ܺ௧,																									ሺ7ሻ 

where ॱ௧
ℚሾ∙ሿ  denotes the risk-neutral expectation under the martingale measure ℚ , 

ܺ௧ ≡ ଵܤ ଵܸ,௧ ൅ ଶܤ ଶܸ,௧ defines a weighted variance, ܣ ൌ ଵܣ ൅ ଶܣ ൅  ௃, andܣߣ

                                                                                                                                                        

to the stochastic volatility with independent jumps (SVIJ) model of Duffie et al. (2000) by setting ଶܸ,௧ ൌ ଶߠ ൌ
௃ߩ ൌ 0. However, for models with a single variance component, for simplicity, we focus on the SVJ and SVCJ 
models. 
9  An alternative definition of the VIX squared is the quadratic variation of the log return process 

ॱ௧
ℚ ൤

ଵ

୼௧
׬ ቀ

ௗ௉ೠ
௉ೠ
ቁ
ଶ௧ା୼௧

௧ ൨. See, for example, Amengual and Xiu (2012), Branger and Völkert (2012), Britten-Jones 

and Neuberger (2000), Carr and Wu (2009), and Wu (2011).  
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௝ܤ ൌ ଵି௘షഉೕ౴೟

఑ೕ୼௧
, ݆ ൌ 1, 2,

௝ܣ ൌ ௝ൣ1ߠ െ ,௝൧ܤ ݆ ൌ 1, 2,

௃ܣ ൌ ఓೡ
఑భ
ሾ1 െ ଵሿܤ ൅ 2 ቎௘

ഋ೛శ
഑೛
మ

మ

ଵିఘ಻ఓೡ
െ 1 െ ௣ߤ െ 		.௩቏ߤ௃ߩ

																	    ሺ8ሻ 

It should be noted that the total variance, ܸܺܫ௧ଶ, comprises of two parts. The continuous 

part of the jth variance component, ܣ௝ ൅ ௝ܤ ௝ܸ,௧, is a weighted average of ௝ܸ,௧ and its long-run 

mean level ߠ௝, with the weight, ܤ௝, being related to its mean-reversion speed. The jumps in 

both price and variance also affect the total variance, with the total impact being derived as 

 ௝ (the correlation coefficientߩ ௃. As noted in the related literature, VIX is irrelevant toܣߣ

between index price and its variance).10  

The linear relationship between VIX squared and instantaneous variances in Equation (7) 

implies that a VIX derivatives payoff is a square root function in state variables. According to 

risk-neutral valuation theory, the value of a VIX call option at time ݐ, with strike price ܭ, 

time to maturity ߬ and discount rate ݎ, is expressed as 

௧ܥ
௏ூ௑ሺܭ, ߬, ሻݎ 	≡ 	 ݁ି௥ఛॱ௧

ℚሾሺ்ܸܺܫ െ                                 ሻାሿܭ

ൌ 100݁ି௥ఛॱ௧
ℚ ቂඥܣ ൅ ൛௑೅ஹ௄బమି஺ൟቃܫ	்ܺ െ ௧ݎ௥ఛܲି݁ܭ

ℚሺ்ܸܺܫ ൒  ሺ9ሻ						ሻ,ܭ

where ܫሼ⋅ሽ denotes the indicator function, ܶ ൌ ݐ ൅ ଴ܭ ,߬ ൌ ௧ݎܲ and ,100/ܭ
ℚሺ⋅ሻ denotes the 

risk-neutral probability measure. It should be noted that the VIX derivatives prices are 

difficult to solve due to the square root payoff; we therefore go on in the following 

sub-section to propose a closed-form approximation. 

2.3  Closed-Form Approximation for VIX Derivatives 

The aim of our approximation is essentially to transfer a thorny problem into a manageable 

subject. Specifically, we use ܰ piecewise exponential curves to approximate the target 

                                                 
10 This formula can be reduced to Duan and Yeh (2010) by setting ଶܸ,௧ ൌ ଶߠ ൌ ௩ߤ ൌ 0, and to Cheng, Ibraimi, 
Leippold, and Zhang (2012) by setting ଶܸ,௧ ൌ ଶߠ ൌ 0. 
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payoff in the interval ቂܺ଴
ሺ௞ሻ, ܺே

ሺ௞ሻቃ, which covers ݇ standard deviations around the mean of 

the state variable ்ܺ.11 Consequently, we derive the closed-form solution for the substitute 

payoff. This approach follows Duffie et al. (2000) who derived a closed-form solution for 

option prices when the payoff is an exponential function in state variables. Although Duffie et 

al. (2000) also provided the closed-form option prices for linear payoffs, exponential curves 

provide a simpler way of solving the analytic form for the ‘ordinary differential equations’ 

(ODEs) when deriving the option prices.12 More importantly, exponential curves fit the target 

payoff more effectively. 

Figure 1 illustrates a concrete example of ݇ ∈ ሼ3,6ሽ and ܰ ∈ ሼ1,4ሽ under the SVCJ 

model with parameters based on Duffie et al. (2000): ߢଵ=3.5, ߠଵ=0.01, ߪଵ=0.15, ߣ ൌ0.5, 

ߤ̅ ൌ െ0.1, ߤ௩=0.05, ߪ௣=0.0001, ߩ௃ ൌ െ0.4, ଵܸ,௧=0.008, ݎ ൌ0.03, ߬=1, and moneyness 

݉ ൌ 1.13 The solid and dashed curves respectively depict the target function and our 

exponential approximations, with ቄܺ଴
ሺ௞ሻ,ܯଵ

ሺ௞ሻ, ଵܺ
ሺ௞ሻ, … , ேܯ

ሺ௞ሻ, ܺே
ሺ௞ሻቅ  marking all of the 

fitting points; in particular, ܯ௡
ሺ௞ሻ ≡ ଵ

ଶ
ቀܺ௡ିଵ

ሺ௞ሻ ൅ ܺ௡
ሺ௞ሻቁ  denotes the midpoint of each 

sub-interval. Appendix A provides the complete fitting scheme and all of the explicit 

formulae. 

< Figure 1 is inserted about here > 

We go on to offer a closed-form approximation for VIX option prices in Proposition 1, 

                                                 
11 In our notation, the square root payoff in Equation (9), ඥܣ ൅  ൛௑೅ஹ௄బమି஺ൟ, is approximated byܫ	்ܺ

∑ ሺܽ௡ ൅ ܾ௡݁௖೙௑೅ሻேିଵ
௡ୀଵ ܫ

ቄ௑೙షభ
ሺೖሻ ஸ௑೅ஸ௑೙

ሺೖሻቅ
൅ ሺܽே ൅ ܾே݁௖ಿ௑೅ሻܫቄ௑ಿషభ

ሺೖሻ ஸ௑೅ቅ
,  

or equivalently, 
ሺܽଵ ൅ ܾଵ݁௖భ௑೅ሻܫቄ௑బ

ሺೖሻஸ௑೅ቅ
൅ ∑ ሺܽ௡ାଵ െ ܽ௡ ൅ ܾ௡ାଵ݁௖೙శభ௑೅ െ ܾ௡݁௖೙௑೅ሻேିଵ

௡ୀଵ ܫ
ቄ௑೙

ሺೖሻஸ௑೅ቅ
,  

where ሺܽ௡, ܾ௡, ܿ௡ሻ are corresponding coefficients for each exponential curve. 
12 We refer to Equations (2.5)-(2.6) and (2.15)-(2.16) in Duffie et al. (2000) for the ODEs for the respective 
exponential and linear payoffs. The first step in solving the ODEs of the linear payoffs is to solve the ODEs of 
the exponential payoffs.  
13 For simplicity, the Duffie et al. (2000) parameters are slightly adjusted in the present study. The parameters 
that were estimated by Duffie et al. (2000) were ߢ ൌ 3.46, ߠ ൌ 0.008, ߪ ൌ 0.14, ߣ ൌ 0.47, ߤ̅ ൌ െ0.1, ௩ߤ ൌ
0.05, ௣ߪ ൌ 0.0001, ௃ߩ ൌ െ0.38, and ଴ܸ ൌ 0.007569. 
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where the pricing errors of the proposed approximation are caused by the fitting error 

multiplied by the corresponding probability. Since both the target and the substitute payoffs 

are continuous functions, with increases in the specified fitting range, k, and the number of 

exponential curves, N, the fitting error converges to zero. Our numerical analysis (Appendix 

B) shows that our approximation with (k, N) = (6,4) can effectively value VIX options, since 

it performs with similar accuracy, albeit with much less computational time being required,  

operating as much as eighty times faster than Lian and Zhu (2013), a less time-consuming 

approach within the literature.14 

 

PROPOSITION 1. (CLOSED-FORM APPROXIMATION).  

The VIX call option can be approximated by 

௧ܥ
௏ூ௑ሺܭ, ߬, ሻݎ ൌ 100݁ି௥ఛ ቈ

Φሺ0ሻ
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െ
1
ߨ
න
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ݒ
ሻݒ൫Φሺ݃ܽ݉ܫ ൅Φ෩ሺݒሻ൯݀ݒ

∞

଴
቉,									ሺ10ሻ 

where  

Φሺݒሻ ൌ ሾܽே߰ሺെ݅ݒሻ ൅ ܾே߰ሺܿே െ ሻሿ݁௜௩௑ಿషభݒ݅
ሺೖሻ

െ ሻ݁௜௩൫௄బݒ଴߰ሺെ݅ܭ
మି஺൯,       

Φ෩ሺݒሻ ൌ ∑ ቂሺܽ௡߰ሺെ݅ݒሻ ൅ ܾ௡߰ሺܿ௡ െ ሻሻݒ݅ ቀ݁௜௩௑೙షభ
ሺೖሻ

െ ݁௜௩௑೙
ሺೖሻ
ቁቃேିଵ

௡ୀଵ ,          

where ሺܽ௡, ܾ௡, ܿ௡ሻ, ܺ௡
ሺ௞ሻ, and ߰ሺ⋅ሻ are analytic terms as defined in Appendix A. 

PROOF.  See Appendix A. 

3 Data Description and Empirical Methodology 

3.1 Data Description 

Our primary dataset, which is obtained from the CBOE, includes the end-of-day bid and ask 

quotes of VIX options for the 2007-2010 period.15 Since our sample period covers the recent 

financial crisis, in Section 6.1, we examine whether our empirical results are robust to the 

                                                 
14 Branger and Völkert (2012) proposed a similar formula to Lian and Zhu (2013); however, further numerical 
calculations were required to solve the ODEs, whilst Bardgett et al. (2013) valued VIX options using a Fourier 
cosine expansion approach involving numerous complex error functions. In the present study, our comparisons 
are confined to the Lian and Zhu (2013) study. 
15 Although VIX options were launched on 24 February 2006, our sample period runs from 2007 in order to 
avoid the liquidity issue at the early stage of this newly-introduced product. 
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crisis period. Since VIX options are European-style options traded on the CBOE, we use 

mid-quotes to represent the option prices. We obtain the daily closing levels of VIX along 

with the option data, and in order to investigate the performance of various models on pricing 

VIX futures, we also obtain the daily settlement prices of VIX futures from the CBOE. The 

risk-free rate is calculated for each derivative contract through the interpolation of zero curve 

surfaces obtained from the OptionMetrics database to fit the contract maturity.  

Due to the liquidity concern, we adopt some filtering rules commonly used within the 

related literature: (i) we omit those options with fewer than seven days and more than 366 

days to maturity; (ii) all observations with zero trading volume are discarded; (iii) we exclude 

all observations with bid prices lower than the minimum tick size, US$0.1, or with ask prices 

lower than the bid prices; and (iv) we eliminate observations violating the arbitrage 

conditions.16 Our resultant sample provides a total of 86,149 observations, comprising of 

55,965 calls and 30,184 puts. We follow Bakshi et al. (1997) to classify the VIX options into 

18 categories, as described below, based upon their moneyness (݉) and time to maturity (߬), 

where moneyness is defined as the strike price divided by the VIX futures price.  

A VIX call option is classified as deep in the money (DITM) if ݉ ൑ 0.75, in the money 

(ITM) if ݉ ∈ ሺ0.75,0.9ሿ, slightly in the money (SITM) if ݉ ∈ ሺ0.9,1.0ሿ, slightly out of the 

money (SOTM) if ݉ ∈ ሺ1.0,1.1ሿ, out of the money (OTM) if ݉ ∈ ሺ1.1,1.35ሿ, and deep out 

of the money (DOTM) if ݉ ൐ 1.35.17 However, in contrast to Bakshi et al. (1997), we adopt 

wider partitions, as in Mencía and Sentana (2013), essentially because the VIX is much more 

                                                 
16 First, we eliminate observations violating the arbitrage bounds: 

 maxሼ0, ݁െ߬ݎሺܨ௧௏ூ௑ሺ	߬ሻ െ ሻሽܭ ൑ ݐܥ	
,ܭሺܺܫܸ ߬, ሻݎ ൑ ݁െܨ߬ݎ௧௏ூ௑ሺ	߬ሻ 

and  
max൛0, ݁െ߬ݎ൫ܭ െ ௧ܨ

௏ூ௑ሺ߬ሻ൯ൟ ൑ ݐܲ	
,ܭሺܺܫܸ ߬, ሻݎ ൑ ݁െܭ߬ݎ. 

Next, for each option maturity, if the prices are not monotonic in the strike prices, we eliminate those 
observations with lower volumes. It should be noted that the observations that are not monotonic in time to 
maturity should not be eliminated due to the mean-reversion property of volatility. 
17 Similarly, a VIX put option is classified as DOTM if ݉ ൑ 0.75, OTM if ݉ ∈ ሺ0.75,0.9ሿ, SOTM if 
݉ ∈ ሺ0.9,1.0ሿ, SITM if ݉ ∈ ሺ1.0,1.1ሿ, ITM if ݉ ∈ ሺ1.1,1.35ሿ, and DITM if ݉ ൐ 1.35. 
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volatile than the SPX.18  

In terms of time to maturity, we classify VIX options into groups of short-term (߬ ൏ 

60/365), mid-term (60/365൑ ߬ ൏180/365), and long-term (߬ ൒180/365) maturities. For each 

category, the average mid-quote (Price), the total number of observations (Obs), the average 

trading volume (Vol), and the average open interest (OIT) are reported in Table 1, with Panels 

A and B respectively reporting the results for call and put options. 

< Table 1 is inserted about here > 

The average prices range from $0.45 (short-term, DOTM) to $12.12 (short-term, DITM) 

for VIX call options and from $0.34 (short-term, DOTM) to $19.62 (mid-term, DITM) for 

VIX put options. In general, a longer maturity does not imply a higher option price; the main 

reason for this is that long-term contracts are clustered in 2007, a period with relatively low 

VIX levels. We also find that for both trading volume and open interest, DITM, ITM, and 

SITM VIX call options are less liquid than the respective DOTM, OTM, and SOTM VIX put 

options. We therefore replace all categories of the in the money VIX call option by their 

corresponding out of the money VIX put options via the VIX put-call parity.19 

3.2 Empirical Methodology 

We follow Bakshi et al. (1997) for the estimation of the model parameters from VIX options, 

so as to minimize the daily sum of the squared pricing errors. We also employ the VIX 

formula, Equation (7), with the VIX time series as a constraint, following a widely used 

approach in the VIX-related literature.20 In other words, the instantaneous variance can be 

identified by the VIX constraint for models with single variance component (SV, SVJ, and 

SVCJ), treating the second instantaneous variance as another parameter for those models with 

                                                 
18 The partitions adopted by Mencía and Sentana (2013) comprised of lnሺ݉ሻ ൏ െ0.3, lnሺ݉ሻ ∈ ሾെ0.3, െ0.1ሻ, 
lnሺ݉ሻ ∈ ሾെ0.1,0.1ሻ, lnሺ݉ሻ ∈ ሾ0.1,0.3ሻ, and lnሺ݉ሻ ൒ 0.3.  
19 The value of a VIX put option can be expressed as ௧ܲ

௏ூ௑ሺܭ, ߬, ሻݎ 	≡ 	 ݁ି௥ఛॱ௧
ℚሾሺܭ െ  ሻାሿ, and VIX்ܺܫܸ

put–call parity is given by 

௧ܲ
௏ூ௑ሺܭ, ߬, ሻݎ ൌ ௧ܥ	

௏ூ௑ሺܭ, ߬, ሻݎ ൅ ݁ି௥ఛ൫ܭ െ ௧ܨ
௏ூ௑ሺ߬ሻ൯, 

where ܨ௧
௏ூ௑ሺ߬ሻ denotes the level of VIX futures at time ݐ, with time to maturity ߬.  

20 Examples include Duan and Yeh (2010), Branger and Voሷ lkert (2012), and Song and Xiu (2014).  
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two variance components (2-SV and 2-SVJ). 21  Specifically, we solve the following 

minimization for each day: 

ቐ
min஀,௏మ,೟ ௧ܧܵܵ ≡ ∑ ൫ܥ௝൫Θ, ଵܸ,௧, ଶܸ,௧൯ െ ௝ܥ

∗൯
ଶ௡೟	

௝ୀଵ 	

		s. t.													 ଵܸ,௧ ൌ ൤ቀ௏ூ௑೟
ଵ଴଴

ቁ
ଶ
െ ܣ െ ଶܤ ଶܸ,௧൨ ଵൗܤ ,						

            (11) 

where Θ ≡ ൫ߢଵ, ,ଵߠ ,ଵߪ ,ଶߢ ,ଶߠ ,ଶߪ ,ߣ ,௣ߤ ,௣ߪ ,௩ߤ ௃൯ߩ  are the structure and jump-related 

parameters; ܵܵܧ௧ denotes the sum of squared error at time ݐ; ݊௧ denotes the observations 

at time ܥ ;ݐ௝൫Θ, ଵܸ,௧, ଶܸ,௧൯ and ܥ௝
∗ respectively refer to the theoretical and market prices of a 

call option; and ܸܺܫ௧ denotes the closing levels of the VIX at time ݐ. 

When a model with more parameters fits the in-sample data more effectively, this raises 

the question of whether it also has superior out-of-sample performance; we therefore explore 

the out-of-sample results in an attempt to determine whether the extra parameters cause 

over-fitting. Following Bakshi et al. (1997), we use the in-sample daily estimated parameters 

and variances to compute the next day’s option prices for each day, with the exception of the 

final day. 

In the objective dollar pricing error in Equation (11) more weight is assigned to the 

relatively expensive VIX options; alternatively, by minimizing the sum of the squared relative 

errors, less weight is assigned to the relatively expensive VIX options, whilst the 

minimization of the sum of the squared errors in Black-Scholes implied volatility leads to less 

weight being assigned to near the money VIX options. Hence, both of these alternative 

weighting schemes are examined as a check for the robustness of our results in Section 6.2. 

Although the minimization in Equation (11) involves numerous parameters and 

extremely complex objective functions, our proposed approximation offers an effective 

alternative approach. Considering the trade-off between computational accuracy and 

                                                 
21 Although treating the instantaneous variance as another parameter may not the optimal approach for 
estimation, this approach is seen as a simpler and popular alternative within the literature (Bakshi et al., 1997; 
Christoffersen et al., 2009). For the monthly estimation, we adopt an iterative two-stage procedure, as in Bates 
(2000), Huang and Wu (2004), and Christoffersen et al. (2009), as detailed in Section 5.1. 
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efficiency, we select (k, N) = (6, 4) to implement the pricing formula of VIX derivatives in 

our subsequent empirical analysis, with the computation of 100 option prices taking about 

1.15 seconds for the single-variance model, and about 4.30 seconds for the two-variance 

model.  

In order to ensure that the approximation method selected in this study does not mislead 

the estimation, we carry out additional investigations into the approximation errors across 

alternative implementation methods in Section 6.3. Given that a call option reduces to a 

futures contract when the strike price and discount rate are set as zero, the same estimation 

method can be applied to VIX futures; thus, we address this issue in Section 5.1, where the 

theoretical and market prices of call options are replaced by those of futures. 

4 Preliminary Results on VIX Options 

4.1 Parameter Estimates 

The summary statistics of the parameter estimates from the daily updated frequency are 

reported in Table 2 for the single variance component model (Panel A) and the two-variance 

component model (Panel B), with the penultimate rows of the two panels reporting the 

average daily root mean-squared errors (RMSEs). For the two-variance model, we follow a 

number of prior related studies to identify the two variance components by their mean 

reversion speed, in which the factor with faster (slower) reversion speed captures the 

short-run (long-run) variance.22 In order to clarify the notations, the parameters for the short- 

and long-run variance components are respectively denoted by ( ,௦ߢ ,௦ߠ ,௦ߪ ௦ܸ,௧ ) and 

,௟ߢ) ,௟ߠ ,௟ߪ ௟ܸ,௧), with the suffixes being disposed of for the single-variance models ሺߢ, ,ߠ ,ߪ ௧ܸሻ. 

<Table 2 is inserted about here> 

                                                 
22 Examples include Adrian and Rosenberg (2008), Alizadeh et al. (2002) and Christoffersen et al. (2009). 
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As shown in Panel A of Table 2, the respective daily average mean-reversion speeds, ߢ, 

for the SV, SVJ and SVCJ models are 3.395, 3.897 and 4.510, thereby implying that the 

half-life period of variance shocks is roughly three months. These estimated values are 

consistent with the extant literature on index options, such as Christoffersen et al. (2009), in 

which the estimated ߢ under the SV model during their 1990-2004 sample period was found 

to be between 1.60 and 4.43. Panel B of Table 2 shows that for two-variance models, the 

estimated ߢ௦  is approximately 15, whilst the estimated ߢ௟  is approximately 1.8, which 

means that the two-variance models are indeed capable of capturing the differences in the 

variance components, in terms of their mean reversion speed. The half-life of the short-run 

variance is close to one month, whilst that of the long-run variance is roughly six months. 

As compared to the literature on index options (such as Eraker et al., 2003), our 

estimated volatilities under the single-variance models (ඥ ௧ܸ) are largely due to the financial 

crisis during our sample period (resulting in a volatile VIX process). The volatilities 

estimated by Eraker et al. (2003) are roughly 15 per cent, whilst the ඥ ௧ܸ estimated in the 

present study are 25.8 per cent for the SV model, 18.7 per cent for the SVJ model and 20.5 

per cent for the SVCJ model; however, the respective median levels are only 22.8 per cent 

14.8 per cent and 16.7 per cent.23 

Figure 2a illustrates the spot volatility estimates for single-variance models over our sample 

period, with all estimated volatilities being highly correlated to the VIX level and all of the 

coefficients being in excess of 0.90.24 Conversely, the estimated volatility levels under the 

two-variance models (ඥ ௦ܸ,௧ and ඥ ௟ܸ,௧) range between 14.9 per cent and 17.4 per cent. Figure 2b 

                                                 
23 Similarly, the volatilities of variance (ߪ ,ߪ௦, and ߪ௟) are also generally found to be quite high. The daily 
average ߪ for the SV model is 0.852, but its median is only 0.564. For the two-variance models, one of the 
estimated ߪ௝ reaches a high of approximately 2.4, which is in line with the findings of Bates (2000) and 
Christoffersen et al. (2009). In particular, the higher ߪ௝ estimated by Christoffersen et al. (2009) reaches an 
average of 3.667, and was as high as 9.43 in 1994. 
24 Although we incorporate the VIX constraint into our estimation, the estimated instantaneous volatility is not 
necessary highly correlated to the VIX level. Specifically, ܸܺܫ௧ ൌ 100 ൈ ඥܣ ൅ ଵܤ ௧ܸ , and the correlation 
coefficient may be low if the estimated ܣ and ܤଵ are not stable. 
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(2c) illustrates the short-run (long-run) volatility estimates over our sample period for the 

two-variance models. The volatility estimates for these models are also found to be highly 

correlated to the VIX level, with coefficients in excess of 0.75. Finally, the jump parameters, 

comprising of the estimated jump size in returns (ߤ௣) and the correlation between two jumps (ߩ௃), 

are both found to be negative, which is consistent with the extant index options literature.  

<Figures 2a-2c are inserted about here> 

4.2 Pricing Error 

As regards the average in-sample RMSE for nested models, models with more parameters 

always outperform those with fewer parameters, since the latter can be regarded as 

constrained models. For example, the average RMSEs are 0.233 for the SV model, 0.150 for 

the SVJ model and 0.122 for the SVCJ model, whilst the averages are 0.089 for the 2-SV 

model and 0.085 for the 2-SVJ model; nevertheless, the latter group appears to generally 

outperform the former. Our non-tabulated results show that in both the in-sample and 

out-of-sample results, and across both moneyness groups and time to maturity periods, those 

models with a second variance component (2-SV and 2-SVJ) consistently outperform those 

with no second variance component (SV, SVJ and SVCJ). 

Two statistical tests are adopted in Table 3 to facilitate an examination of whether the 

improvements made by the extended models are statistically significant. Panels A and B 

respectively report the mean and median of the differences in the daily RMSE, with the 

difference being defined by the error of the compared model specified in the first row minus 

that of the selected model specified in the first column. Panel A examines whether the means of 

the daily RMSE for any two models are equal by utilizing the two-sample t-test with unequal 

variances. Given the sensitivity to extreme mean values, Panel B also considers the Wilcoxon 

matched-pairs signed-rank test to investigate the null hypothesis that the median of the 
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differences in the daily RMSEs between any two models will be zero.25  

<Table 3 is inserted about here> 

The positive means and medians in all of the results reveal better fitting performance for 

the selected models, with the in-sample results showing that the differences are statistically 

significant at the 5 per cent level, with the exception of the mean of the differences between 

the 2-SV and the 2-SVJ models. These findings indicate that the improvements made by 

adding jumps into the returns may not be statistically significant for the pricing of VIX 

options once the second variance component is incorporated. The out-of-sample predictions 

are also found to provide qualitatively similar results to the in-sample estimations. 

Since the SVCJ and the 2-SVJ models represent two alternative ways of improving on 

the SVJ model, we focus on comparisons between the SVJ and the SVCJ models in Table 4 

to observe the improvements made by variance jumps, as well as comparisons between the 

SVJ and the 2-SVJ models in Table 5 to observe the improvements made by the long-run 

variance component.  

In both tables, the in-sample and out-of-sample results are reported on the mean (median) 

equality test in Panel A (Panel B).26 Using the SVJ model as the benchmark, we examine the 

null hypothesis that the mean/median of the differences between the absolute pricing errors of 

the SVCJ and 2-SVJ models for VIX options, across both moneyness and time to maturity, will 

be greater than zero.27 

To facilitate our examination of the fitting performance across moneyness levels and 

                                                 
25 The test statistic is 

௫,௬ݐܽݐܵ ൌ ∑ ,ݔሺ|݀௝ሺ݇݊ܽݎ൛ௗೕሺ௫,௬ሻவ଴ൟܫ ሻ|ሻݕ
࣮
௝ୀଵ ,  

where ௝݀ሺݔ,  ሼ.ሽܫ ሻ is the RMSE of Model x minus that of Model y for the jth trading date in our sample, andݕ
denotes the indicator function. The standardized version of this statistic is asymptotically normal. 
26 Although the 2-SV model and the Sepp (2008) SVCJ model are two alternative ways of improving on the SV 
model, models incorporating jumps in variance only are not popular in the options literature. 
27 It should be noted that the pricing errors defined in Tables 4 and 5 are the absolute pricing errors for each 
transaction. The test statistic is: 

௫,௬ݐܽݐܵ ൌ ∑ ,ݔሺ|݀௝ሺ݇݊ܽݎ൛ௗೕሺ௫,௬ሻவ଴ൟܫ ሻ|ሻݕ
ࣨ
௝ୀଵ ,  

where ࣨ is the total number of options, ௝݀ሺݔ,  ሻ is the difference of the absolute pricing error of Models xݕ
and y for the jth VIX option in our sample. 
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time to maturity periods, all of the data are divided into five moneyness categories and three 

time-to-maturity periods. For space-saving purposes, we combine SOTM and SITM into one 

group, referred to as ‘near the money’ (NTM). 

Table 4 reveals that whilst the SVCJ model clearly does make significant improvements 

on the SVJ model for all VIX options data, the improvements do not hold for all categories, 

since the absolute pricing errors of the SVCJ model for numerous in-the-money and long-term 

categories are not found to be significantly lower than those of the SVJ model at the 5 per cent 

significance level. Indeed, for some long-term categories, the pricing errors of the SVCJ model 

are even found to be significantly higher than those of the SVJ model, an observation which 

suggests that time-to-maturity plays a vital role in variance jump performance.  

<Table 4 is inserted about here> 

In contrast, Table 5 shows that at the 5 per cent significance level, the absolute pricing 

errors of the 2-SVJ model are significantly lower than those of the SVJ model for all categories, 

with only one exception, the long-term, NTM sub-category in the out-of-sample results of the 

mean equality test. In addition, the improvements made by the 2-SVJ model are generally 

found to be greater than those of the SVCJ model. Although the better performance of the 

2-SVJ model may arguably be attributable to the number of parameters, our non-tabulated 

results examining the pairs of SVJ-2-SV show the same patterns. The pricing errors of the 

2-SV model are also smaller than those of the SVCJ model, despite the fact that the latter has 

more parameters than the former.  

<Table 5 is inserted about here> 

Overall, the in-sample and out-of-sample results provide consistent findings; that is, 

specifying the second variance component can significantly raise the precision of the evaluation 

of VIX options, whilst the inclusion of variance jumps can capture the secondary effect. As 

noted by Bates (2000), a jump component generates more flexibility for the skewness and 

kurtosis of the underlying distribution, whilst the second variance component allows for a more 
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complicated volatility term structure. Thus, our preliminary findings indicate that relaxing 

flexibility for the term structure may be more crucial for the pricing of VIX options. 

Consequently, it should be of some interest to explore certain other factors, such as the reasons 

why the second variance component is so important, whether the two-variance structure 

eliminates the need for variance jumps, and what the actual values of the variance jumps are. 

5 Discussion 

5.1 The Value of the Second Variance Component 

Despite the fact that a growing number of studies have reported the valuable role of the 

second variance component,28 the term structure of VIX derivatives has not been extensively 

explored. Branger and Völkert (2012) briefly noted that whilst the two-variance structure 

allows for a more flexible VIX futures term structure, it cannot generate flexible patterns on 

VIX option-implied volatility. As such, they did not consider two-variance models and 

offered no detailed discussions on the VIX futures term structure. Conversely, Bardgett et al. 

(2013) suggested that specifying a stochastic central tendency might help to provide a better 

representation of the term structure of VIX options.  

In the present study, we offer theoretical justifications for examining the valuable role of 

the second variance component. Firstly, we observe the patterns of the VIX futures term 

structure, essentially because futures contracts provide a clear avenue for investigating the 

impact on the term structure. The VIX futures term structure provides the market 

expectations on the VIX level across different maturity periods. When the current VIX level 

is relatively low (high), the VIX futures term structure is generally found to be upward 

(downward) sloping, due to the stylized fact of the mean-reversion of volatility; however, we 

find that the VIX futures term structure often exhibits a U-shaped or hump-shaped pattern.29 

                                                 
28 See, for example, Christoffersen et al. (2009) and Egloff, Leippold and Wu (2010). 
29 Let us suppose that the observed prices for each trading date, t, are ܨ௧,ଵ, ,௧,ଶܨ … ,  , … ,௧,௝, j = 2, 3ܨ ௧,ே, if anܨ
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In Appendix C, we offer theoretical explanations as to why single-variance models are 

incapable of generating a hump-shaped pattern, even when the variance jumps are specified, 

whereas the hump-shaped pattern is easily explained by two-variance components when the 

short-run (long-run) variance is lower (higher) than its corresponding long-run mean level. 

In Figures 3a-3d, we demonstrate the fitting performances of the SV, SVCJ and 2-SV 

models based upon four typical patterns of the empirical term structure of VIX futures, 

comprising of: (i) upward-sloping (11 December 2009); (ii) downward-sloping (24 October 

2008); (iii) U-shaped (6 March 2007); (iv) and hump-shaped (7 April 2009).30 Interestingly, 

Figures 3a-3d reveal that the 2-SV model significantly outperforms the SV and SVCJ models in 

the hump-shaped pattern, whilst the SV and SVCJ models are found to perform as well as the 

2-SV model in all other patterns.  

<Figure 3 is inserted about here> 

Since the hump-shaped pattern may simply arise from the mean-reversion expectations of 

investors, we offer an alternative analysis in an attempt to emphasize the importance of the 

second variance component. Observing the fluctuations in the VIX futures term structures for 

periods of two consecutive days, we find that of the 1,005 pairs, 364 exhibit crosses.31 We 

provide examples of two pairs of VIX futures term structures; the first, observed on 10/11 

August 2009 and illustrated in Figure 4a, has a hump-shaped pattern, whilst the second, 

observed on 14/15 March 2007 and illustrated in Figure 4b, has a U-shaped pattern, with the 

hump-shaped (U-shaped) pattern revealing parallel (non-parallel) shift. Clearly, this type of 

                                                                                                                                                        

N – 1 exists, which simultaneously satisfies ܨ௧,௝ ൒ ௧,௝ܨ ௧,௝ିଵ andܨ ൒  ௧,௝ାଵ, we can then conclude that the termܨ
structure contains at least one hump, and similar rules can be used to examine the other patterns. Of the total of 
1,006 days of observations in our 2007-2010 sample period, the term structure was found to be strictly 
increasing (decreasing) on 266 (166) days, and exhibiting at least one smile for 389 days, and at least one hump 
for 533 days.  
30 Given that the number of available futures contracts is very low, we use synthetic observations of futures 
prices generated by fitting the available market prices of futures with the cubic spline to estimate the model 
parameters. 
31 Since the observed times to maturity are not constant across days, we adopt the cubic spline to generate a 
smooth term structure function. To avoid unnecessary errors, we do not extrapolate the term structure beyond 
the observed ranges. 
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term structure variation indicates opposing changes in short- and long-run expectations, 

which is precisely captured by the two-variance models, whereas the single-variance models 

with jumps are unable to generate this common situation.32 

<Figures 4a and 4b are inserted about here> 

Following on from our brief discussion on VIX futures term structures, we return to the 

empirical performance of VIX option pricing. Inspired by our observations of the changes in 

the VIX futures term structures over two consecutive days, we further examine the empirical 

performance of VIX option pricing based upon an alternative updating frequency,33 with the 

monthly estimation results showing that the average RMSEs are 0.396 for the SV model, 

0.324 for the SVJ model and 0.322 for the SVCJ model. 

When we switch from daily to monthly updating frequencies for single-variance models 

with jumps, the advantage becomes smaller, with the improvements made by both the SVJ 

and SVCJ models being found to be statistically insignificant in the mean equality test. Our 

non-tabulated results also reveal that for both the SVJ and the SVCJ models, the 

improvements are close to zero when we take into consideration lower updating frequencies, 

such as quarterly or annual estimates. 

By contrast, the monthly averages for the RMSE are 0.396 for the SV model, 0.193 for 

the 2-SV model and 0.187 for the 2-SVJ model. The improvements made by the two-variance 

models remain statistically significant, regardless of the frequency of the estimations. These 

results are consistent with the findings for the VIX futures term structures; that is, those 

                                                 
32 Although not provided here, the technical details are available from the authors on request. 
33 It should be noted that the instantaneous variance is time-varying, while the parameters in Θ are assumed to 
be constant over time. As discussed in Section 3.2, the instantaneous variance ଵܸ,௧ can be uniquely determined 
by Θ for the single-variance models after employing the VIX constraint; however, for multi-factor models, the 
variance swap rate cannot uniquely identify the two components of instantaneous variance in one constraint. We 
therefore adopt the iterative two-step procedure used by Bates (2000), Huang and Wu (2004) and Christoffersen 
et al. (2009), which is detailed as follows. In Step 1, given Θ, we solve Equation (11) to obtain the sequences of 

ଶܸ,௧ at each date, and in Step 2, given a sequence of ଶܸ,௧ we minimize the aggregate sum of the squared error 
∑ ௧࣮ܧܵܵ
௧ୀଵ  subject to the VIX constraint to obtain the model parameters Θ, where ࣮ denotes the total number 

of days. This procedure iterates between Step 1 and Step 2 until the aggregate SSEt converges, with our 
proposed approximation once again significantly lowering the computational burdens. 
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models without the second variance component are incapable of capturing the various 

changes in the term structure of VIX derivatives, although this failing is not apparent in the 

daily estimates. 

In summary, in this section we have demonstrated the way in which the two-variance 

model provides flexibility for the VIX futures term structure and identified when this 

flexibility is crucial for the pricing of VIX options. Furthermore, the fickle patterns observed 

in the empirical term structure of the VIX derivatives explain why the two-variance 

specification is so successful. Not only do we explain our empirical findings, but we also 

offer theoretical justifications. 

5.2 Short-run Variance Component and the Need for Variance Jumps 

Despite the compelling evidence in support of the existence of variance jumps,34  our 

preliminary results, along with the findings of Mencía and Sentana (2013), demonstrate that 

only modest improvements on the pricing of VIX derivatives are provided by the inclusion of 

variance jumps. Since variance jumps intuitively capture short-run information, whilst 

two-variance models capture both short- and long-run information, this raises the question of 

whether the short-run variance component in the two-variance model eliminates the need for 

variance jumps; in an attempt to answer this question, we investigate the improvements in 

pricing made by variance jumps after specifying the second variance component. 

We extend our empirical estimations in Section 4 using the full model, Equations (1)-(5), 

referred to as the 2-SVCJ model, where variance jumps occur in either short- or long-run variance 

processes, depending on which position better minimizes the pricing error. The pricing errors 

between the 2-SVJ and the 2-SVCJ models, which describe the contributions of variance jumps 

when the short- and long-run variance components are specified, are reported in Table 6, from 

which we can see that the 2-SVCJ model makes significant improvements on the 2-SVJ model 

                                                 
34 See, for example, Eraker (2004), Wu (2011) and Todorov and Tauchen (2011). 
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for all VIX options data. 

<Table 6 is inserted about here> 

The mean (median) in-sample improvement is found to be 0.0055 (0.0006), whilst the 

mean (median) out-of-sample improvement is found to be 0.0036 (0.0003). When examining 

the different moneyness categories and time to maturity periods, the pattern is found to be 

similar to that observed in Table 4; that is, the pricing improvements for long-term contracts 

may not be statistically significant, essentially because the jump component primarily captures 

short-run information.  

However, variance jumps seem to be crucial for short-term contracts even if the 

variances are decomposed into short- and long-run components, a finding which indicates 

that the short-run variance component does not eliminate the need for variance jumps. In 

Sections 5.3 and 5.4, we will go on to identify precisely when the role of variance jumps is at 

its most crucial in the pricing of VIX options. 

5.3 The Value of Variance Jumps under Single-variance Models 

In this section, in an attempt to more clearly illustrate the value of variance jumps, we 

duplicate the empirical estimations presented earlier, adopting only short-term  (τ < 60/365) 

data, for two reasons.35 Firstly, the mean-reversion of volatility may mitigate the jump 

impact at expiry, with such mitigation being potentially more significant for long-term 

contracts. Secondly, as demonstrated in Section 5.1, short-term contracts cannot generate 

complicated VIX futures term structures. 

The mean and median equality tests on the pricing errors for our short-term estimations are 

reported in Table 7, where the in-sample results show that the two-variance models still perform 

better than the SVCJ model; however, as compared with Table 3, the advantages become much 

smaller. In particular, the difference between the SVCJ and 2-SV models in the mean equality test 

                                                 
35 The short-term data definition, which is consistent with Bakshi et al. (1997), is shown in Section 3.1.  
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is found to be insignificant. The out-of-sample results further show that of all the models, the 

SVCJ model exhibits superior performance. Although the differences between the SVCJ and 

two-variance models are not statistically significant in some cases, the short-term results differ 

quite markedly from our previous findings using all of the data.  

<Table 7 is inserted about here> 

A summary of the pricing errors under three different scenarios is provided in Table 8. 

Under the first scenario, we minimize the daily RMSE using all VIX options data (the 

preliminary results presented in Section 4); the second scenario reports the monthly estimations, 

as shown in Section 5.2; in the third scenario, we minimize the daily RMSEs using data on 

short-term VIX options only. The average daily/monthly RMSEs under the three scenarios are 

reported in Panel A, the transaction-weighted average RMSEs are reported in Panel B as a 

check for robustness, and Panel C provides a comparison of the RMSE performance of the 

2-SV and 2-SVJ models. Both weighted schemes imply the same conclusion, that under the 

third scenario, the SVCJ model provides significant improvements on the SVJ model.36 

Although the two-variance models are still found to perform better than the SVCJ model in 

terms of short-run in-sample estimations, the SVCJ model is found to outperform all other 

models in the out-of-sample predictions. 

<Table 8 is inserted about here> 

Panel C of Table 8 provides further analysis of the percentages of trading days and months 

when the SVCJ model outperforms the 2-SV and 2-SVJ models; ideally, a superior model 

should have a consistently better fit with the market price. Under the first scenario, the SVCJ is 

found to outperform the 2-SV (2-SVJ) model in only 16.1 per cent (10.6 per cent) of the trading 

                                                 
36 The differences between the SVJ and SVCJ models are also found to be insignificant for the monthly 
estimations, as explained in Section 5.2 
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days in our sample period, thereby indicating that the two-variance models generally perform 

better than the SVCJ model.37 

As regards the daily estimations on short-term data, since the SVCJ model is found to 

outperform the 2-SV (2-SVJ) model in 49.4 per cent (40.3 per cent) of the trading days in our 

sample period, this provides support for the valuable role played by variance jumps in 

short-term contracts. More importantly, the out-of-sample ratios are all found to be higher than 

the corresponding in-sample ratios, thereby indicating that the SVCJ may cause less 

over-fitting than the two-variance models. 

In order to identify whether a particular model performed better over specific periods, 

we illustrate the in-sample RMSEs over time for the SVJ, SVCJ and 2-SVJ models in Figures 

5a-5c. For the daily and monthly results on all data (Figures 5a and 5b), the RMSEs of the 

2-SVJ model are consistently found to be lower than those of the SVCJ model, and this 

remains so even when observing only the 2007- 2009 financial crisis period. However, for the 

daily results on short-term data, the SVCJ and 2-SVJ models are found to be comparable, 

with the 40.3 per cent of trading days captured in Panel C of Table 8 apparently being 

randomly distributed across the whole sample period, thereby eliminating any sample specific 

concerns.  

<Figures 5a-5c are inserted about here> 

The findings in this section provide strong support for the valuable role of variance jumps 

in the pricing of short-term contracts, with the impact of variance jumps in the pricing of 

long-term VIX derivatives being potentially mitigated by the mean reversion of volatility. Such 

mitigation is not addressed within the extant index options literature, essentially because there 

is no mean-reversion in underlying assets; conversely, variance jumps with no second variance 

                                                 
37 Under scenario 2, the SVCJ model always generates larger pricing errors for the in-sample results due to its 
inflexibility with regard to the VIX derivatives term structure. In such cases, the two-variance models are the 
ideal candidates for the pricing of VIX options. 
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component are able to effectively capture the simple term structure of VIX options for 

short-term contracts. 

Although Branger and Völkert (2012) also found that specifying variance jumps 

primarily improved the pricing of short-term VIX options, they attributed the success to the 

right skewness in the instantaneous variance. The focus in their study was essentially on the 

jump impacts across different moneyness categories, whereas we offer alternative 

explanations using time to maturity periods. 

5.4 The Value of Variance Jumps under Two-variance Models 

In addition to the length of time to maturity, another determinant of our mean-reversion 

mitigation argument is the actual speed of mean reversion; hence, in this section, we analyze 

the effects that the mean-reversion speed has on the overall impacts of the variance jumps. 

Although we argue that the impacts of the variance jumps are mitigated by the mean-reversion 

property of volatility, essentially as a result of the European-style design of the contracts, 

intuitively, this argument should not hold when the mean-reversion speed is extremely slow. We 

therefore provide an alternative examination of variance jumps in this section for models with 

two variance components, analyzing the position of the short- and long-run variance 

components in order to determine which jump component is more crucial. 

Following the estimation of the 2-SVCJ model in Section 5.2, we report the percentages 

of trading days exhibiting jumps in the short- and long-run variance components in Table 9, 

with Panel A showing that 69.3 per cent of all variance jumps take place in the long-run 

component, with an average mean-reversion speed of 1.902. The remaining 30.7 per cent of 

all trading days exhibit jumps in the short-run variance component, with an average 

mean-reversion speed of 13.370.38 

                                                 
38 258 of the 1,006 trading days over our sample period exhibited no variance jumps, thereby implying that 
specifying two-variance components alone fits the market price well. To compare the contribution of short- and 
long-run jumps more clearly, “no-jump” cases are excluded from Table 9; nevertheless, the inclusion of trading 
days with no jumps does not distort our conclusions. 
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<Table 9 is inserted about here> 

As regards the ratio between the two mean-reversion speeds, ߢ௦/ߢ௟, we report the results 

on sub-groups with ߢ௦/ߢ௟ levels less than (greater than) specific quantiles in Panel B (Panel C) 

of Table 9, sorted by ߢ௦/ߢ௟. Panel B shows that the percentage of short-run jumps increases 

when the two speeds, ߢ௦ and ߢ௟, begin to converge; in particular, the percentage of short-run 

jumps in the first decile is 48.0 per cent, with averages of ߢ௦ = 5.389 and ߢ௟  = 4.668. In 

contrast, Panel C reveals that with an increase in the difference between the two speeds, there 

will be a corresponding increase in the percentage of long-run jumps; indeed, the percentage 

of long-run jumps in the tenth decile is 78.7 per cent, with averages of ߢ௦ = 0.027 and ߢ௟  = 

21.359.  

Although we argue that the mean-reversion feature may mitigate the impacts of variance 

jumps, the effects are found to be quite limited under slow mean-reversion speeds. The 

sensitivity of a VIX call price to the impact of variance jumps and time to maturity periods 

under the 2-SVCJ model is illustrated in Figures 6a-6b, with parameters based upon our 

earlier estimation results: ߢ௦=12, ߢ௟=2, ඥߠ௦=ඥߠ௟=0.2, ߪ௦=2, ߪ௟=0.75, ௦ܸ,௧= ௟ܸ,௧=0.15, 

ߣ ൌ ௣ߤ ,0.25 ௣ߪ ,0.25– = ௩ߤ ,0.15= ∈ ሼ0.01,0.02… ,0.20ሽ ௃ߩ , ݎ ,0.4– = ൌ 0.03, ߬ ∈

ሼ0.05,0.10,… ,1ሽ and strike price K = 28.39 

Figure 6a (Figure 6b) illustrates the scenario for jumps in short-run (long-run) variance 

components, with Figure 6a showing that the VIX call prices are relatively insensitive to the 

variance jumps, particularly for longer time to maturity periods; however, Figure 6b shows that 

the VIX call prices remain sensitive to the variance jumps for long-term contracts, as a result 

of their slow mean-reversion speed.  

<Figure 6 is inserted about here> 

Finally, as shown earlier in Table 2, the standard error of the estimated long-run level 

                                                 
39 The means of the estimated parameters are ߢ௦= 13.726,	ඥߠ௦= 0.183, ߪ௦= 2.134, ඥ ௦ܸ,௧= 0.150, ߢ௦= 1.970,	ඥߠ௦= 

௦= 0.782, ඥߪ ,0.211 ௦ܸ,௧= 0.148, ߤ ,0.275 =ߣ௣= –0.248, ߪ௣= 0.171, ߤ௩= 0.146, and ߩ௃= –0.409. 
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ඥߠ௟ for the long-run variance component was 0.021, much higher than that for the short-run 

component. After specifying the variance jumps in the long-run component, the standard 

error declines to 0.007 and the average ඥߠ௟ is reduced from 0.382 to 0.211. These results 

indicate that the 2-SVCJ model with jumps in the long-run variance component offers more 

stable and reasonable parameter estimates than those provided by either the 2-SV or 2-SVJ 

models. 

In summary, the role of variance jumps in the pricing of VIX derivatives is essentially 

similar to that in the pricing of index options; that is, the primary aim is to capture short-run 

information. However, since the mean-reversion nature of volatility mitigates the value of 

variance jumps in a valuation sense, the poor performance of volatility jumps in the preliminary 

results actually stems from the features of the contract and the underlying assets, ultimately 

leading to conclusions that differ from those reported in the extant literature on index options. 

Several recent studies have suggested that providing sufficient flexibility for the 

volatility of variance is particularly crucial for the pricing of VIX derivatives, whereas the 

stylized fact of mean reversion partly offsets the jump impact on the volatility of variance.40 

By identifying the value of the variance jumps for those models with both one and two 

variance components, we provide insights which go beyond those of the prior studies (such as 

Mencía and Sentana, 2013). 

6 Tests for Robustness 

6.1 Financial Crisis Period 

We now reexamine the results using the specific sample period of December 2007 to May 2009 

(the financial crisis period defined by the NBER Business Cycle). Table 10 essentially 

duplicates Table 8, but with results on the financial crisis period only. Due to objective dollar 

pricing errors, the RMSEs during the financial crisis period are, in general, found to be greater; 

                                                 
40 See Amengual and Xiu (2012), Branger and Völkert (2012) and Mencía and Sentana (2013). 



30 

however, our prior conclusions remain robust.  

<Table 10 is inserted about here> 

Panels A and B of Table 10 show that the two-variance models outperform the SVCJ 

model with the exception of the out-of-sample results for short-term contracts, whilst Panel C 

shows that the two-variance models consistently perform better than the SVCJ model on the 

monthly in-sample results, and that the SVCJ model outperforms the two-variance models on 

more than 50 per cent of the trading days in the out-of-sample short-term contract results. 

Building on the prior discussion, most of the ratios in Panel C are found to be smaller than in 

Table 8, implying even greater advantages of the two-variance models during the financial 

crisis period.  

This finding is interesting since jump components are designed to capture large 

movements; however, VIX derivatives are forward-looking contracts. Due to the stylized fact 

of volatility persistence, market participants may not expect a large upward movement after a 

dramatic rise in volatility;41 thus, the addition of jumps in variance during the financial crisis 

period does not appear to offer any better fit for the pricing of VIX derivatives. Instead, as 

shown in Schwert (2011), volatility actually exhibits greater mean-reversion during the 

2008-2009 financial crisis period. 

6.2 Alternative Weighting Schemes 

Although this study compares affine SV models by minimizing the sum of the squared error, 

 ௧, we adopt two alternative objective functions as our checks for the robustness of theܧܵܵ

results. Firstly, we minimize the sum of the squared relative error (ܴܵܵܧ௧), which assigns 

more weight to less expensive options: 

min஀,௏మ,೟ ௧ܧܴܵܵ ≡ ∑ ൬
஼ೕ൫஀,௏భ,೟,௏మ,೟൯ି஼ೕ

∗

஼ೕ
∗ ൰

ଶ
௡೟	
௝ୀଵ .              (12) 

                                                 
41 The probability of a large upward movement after a dramatic rise in volatility is intuitively smaller than under 
normal conditions. In particular, since the variance jump component in the SVCJ model is assumed to be 
exponentially distributed, the model cannot capture large downward movements. 
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Secondly, we minimize the sum of the squared error for Black-Scholes implied 

volatilities rather than that for option prices. This ‘sum of the squared implied volatility errors’ 

 which assigns more weight to NTM options, can be approximated using the ,(௧ܧܸܫܵܵ)

Christoffersen et al. (2009) approach: 

min஀,௏మ,೟ ௧ܧܸܫܵܵ ≡ ∑ ൬
஼ೕ൫஀,௏భ,೟,௏మ,೟൯ି஼ೕ

∗

୚ୣ୥ୟೕ,౪
൰
ଶ

௡೟	
௝ୀଵ ,              (13) 

where Vega௝,୲ denotes the Black–Scholes vega for the VIX call, ܥ௝
∗.  

The RMSE, root mean-squared relative error (RMSRE) and implied volatility root 

mean-squared error (IVRMSE), which are respectively obtained from the minimizations, 

Equations (11), (12) and (13), are reported in Table 11. The sample period for this robustness 

test covers the first quarter of 2007 (a relatively tranquil period) and the third quarter of 2008 (a 

turbulent period). Consistent with our main results, the results in Table 11 show that the 2-SV 

model significantly outperforms the SVCJ model regardless of the error functions, thereby 

highlighting the merits of the second variance component.42 

<Table 11 is inserted about here> 

6.3 Approximation Error 

To ensure that our approximations do not confound our empirical results, we investigate the 

approximation errors using two approaches. Firstly, we examine the pricing errors of our 

approximation using our estimated parameters and the closed-form solution detailed in 

Appendix A. Next, setting our estimated parameters as initial values, we redo the empirical 

estimation using the less efficient formula of Lian and Zhu (2013) under the SV, SVJ and SVCJ 

models in order to examine the convergence of the minimization; both investigations highlight 

the merits of our approach. As compared to the closed-form solution, the RMSEs for our 

approximations are less than 0.02, whilst the RMSREs for our approximations are less than 1 

                                                 
42 Since the 2-SV has successfully outperformed the SVCJ model, we provide no further examination of the 
2-SVJ model. 
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per cent for all of the models adopted in this study. Furthermore, we can find no significant 

improvement in the minimizations when adopting the Lian and Zhu (2013) formula. 

7 Conclusions 

The two main approaches for improving on the Heston SV model in the extant index options 

literature on volatility model specifications are identifying either the variance jumps or the second 

variance component (Bates, 1996, 2000; Duffie et al., 2000). We examine whether these two 

approaches also perform well in the pricing of VIX derivatives, which are, thus far, the most 

prominent volatility-related products in the derivative markets. In an attempt to significantly 

reduce the computational burden of the empirical estimations, we also propose an easily 

implemented and efficient numerical approximation for the pricing of VIX derivatives under the 

affine framework. 

Our general findings show that in VIX derivative pricing, specifying the second variance 

component does have merit. Given the stylized fact of the mean-reversion of volatility, the term 

structure of VIX futures prices invariably exhibits hump-shaped patterns and non-parallel shift; 

we show that models with no second variance component provide insufficient flexibility for the 

term structure. Conversely, no significant improvements are discernible in the pricing of VIX 

derivatives by the incorporation of variance jumps in models with a single variance component.  

As the price of a European-style VIX derivative is dependent only on the terminal VIX level, 

the mean-reversion nature of volatility mitigates the large movements generated by variance 

jumps. In contrast, as in stock prices, the level of the S&P 500 index exhibits no mean reversion; 

thus, jumps in variance have direct impacts on changes in the index level even if the terminal 

volatility returns to its pre-jump level. Therefore, given their distinct features, a model which 

shows promise in describing index options, may not be readily applied to the pricing of VIX 

derivatives. 

The two-variance specification does not, however, eliminate the need for variance jumps in 
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VIX option pricing. We have found that when examining only short-term contracts, variance 

jump pricing performance is comparable to that of the second variance component; in this case, 

the impact of mean-reversion mitigation is limited and the term structure of VIX derivatives is 

less complex. We have found that incorporating variance jumps into the long-run variance 

component under the two-variance framework can further improve the pricing fit, with this 

improvement being particularly significant when there are differences in the speed of the two 

variance components. 

Our findings are also found to be robust to the financial crisis period. Given the stylized fact 

of volatility persistence, market participants may not expect a large upward movement after a 

dramatic rise in volatility, and indeed, the addition of variance jumps during the financial crisis 

period offers no better fit for the pricing of VIX derivatives; indeed, volatility is found to 

exhibit more mean reversion after such a rise in volatility, with the two-variance models 

exhibiting consistent superior performance during the 2008-2009 crisis period. 
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Table 1.  Descriptive Statistics of VIX Options 

This table reports the descriptive statistics of VIX options trading during the 2007 to 2010 period, with the 
moneyness being defined as the ratio of the strike price to the VIX futures price. Deep in the money (DITM), in 
the money (ITM), slightly in the money (SITM), slightly out of the money (SOTM), out of the money (OTM), 
and deep out of money (DOTM) are respectively defined as ݉ ൑ 0.75 ݉ ∈ ሺ0.75, 0.9ሿ, ݉ ∈ ሺ0.9, 1.0ሿ, 
݉ ∈ ሺ1.0, 1.1ሿ,	 ݉ ∈ ሺ1.1, 1.35ሿ, and ݉ ൐ 1.35 for VIX call options, and as ݉ ൐ 1.35 ݉ ∈ ሺ1.1, 1.35ሿ, 
݉ ∈ ሺ1.0, 1.1ሿ, ݉ ∈ ሺ0.9, 1.0ሿ,	 ݉ ∈ ሺ0.75, 0.9ሿ, and ݉ ൑ 0.75 for VIX put options. The maturity levels are 
defined as short-term (τ ൏ 60/365), mid-term (60/365 ൑ τ ൏180/365), and long-term (τ ൒ 180/365) maturity. 
Price, Obs, Vol, and OIT respectively refer to the average mid-quote, the number of observations, the average 
trading volume and open interest. 
 

Variables 
Moneyness Level 

DITM ITM SITM SOTM OTM DOTM All 
Panel A:  VIX Call Options 
  Short-term Maturity 

Price (US$) 12.12    5.20  3.12  2.06  1.12    0.45    3.43 
Obs 3,192    3,804 2,523 2,266 4,846   6,498    23,129
Vol 264.6    881.7  2652.2  4539.2  4562.9    2593.8    2600.3 
OIT 8596.3    11765.1  23668.0  36986.3  41975.2    37124.4    28551.4 

Mid-term Maturity 	 	 	
Price (US$) 10.45    5.66  4.04  3.09  2.01    0.84    3.53 
Obs 3,415    4,682 3,250 3,140 6,185   9,136    29,808
Vol 95.1    335.2  736.5  832.1  867.4    820.3    662.9 
OIT 3178.1    4549.0  7331.4  9637.8  9316.4    8677.6    7486.0 

Long-term Maturity 	 	 	
Price (US$) 7.21    4.60  3.42  2.78  1.94    0.88    3.53 
Obs 550    641 385 312 559   581    3,028
Vol 76.5    67.0  124.0  446.2  240.2    594.5    248.2 
OIT 1672.9    820.4  1762.6  3779.9  2898.2    8930.0    3339.6 

All Maturity Period 	 	 	
Price (US$) 10.94    5.39  3.62  2.67  1.64    0.68    3.49 
Obs 7,157    9,127 6,158 5,718 11,590   16,215    55,965
Vol 169.2    544.1  1483.1  2280.1  2382.3    1522.9    1441.1 
OIT 5478.9    7294.7  13676.5  20156.2  22662.1    20086.4    15967.5 

Panel B:  VIX Put Options 
  Short-term Maturity 

Price (US$) 18.07    6.80  3.39  1.80  0.73    0.34    5.48 
Obs 2,464    3,522 2,148 2,508 3,407   1,116    15,165
Vol 50.8    569.0  2265.6  4111.8  3415.3    1515.1    2020.1 
OIT 2056.1    14411.8  31224.5  34514.4  29841.3    20977.6    22059.8 

Mid-term Maturity 	 	 	
Price (US$) 19.62    7.95  4.49  2.84  1.26    0.50    4.40 
Obs 1,247    1,976 1,729 2,362 4,222   2,377    13,913
Vol 34.3    152.9  642.1  972.7  1044.9    768.8    718.1 
OIT 297.0    2092.3  6328.2  10132.6  10166.2    9329.4    7509.3 

Long-term Maturity 	 	 	
Price (US$) 14.61    6.56  4.00  2.55  1.22    0.47    4.00 
Obs 138    168 88 173 340   199    1,106
Vol 16.3    20.9  364.8  1037.8  762.7    127.3    453.9 
OIT 55.0    83.2  1247.9  9823.1  6094.2    1148.8    3735.5 

All Maturity Period 	 	 	
Price (US$) 18.45    7.19  3.88  2.31  1.03    0.45    4.93 
Obs 3,849    5,666 3,965 5,043 7,969   3,692    30,184
Vol 44.2    407.6  1515.5  2536.1  2046.2    959.8    1362.6 
OIT 1414.5    9690.6  19702.8  22247.6  18404.2    12409.4    14681.5 
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Table 2.  Parameter Estimates of VIX Options 

This table reports the estimated parameters for the models with a single variance component (Panel A) and two 
variance component (Panel B), with the estimates being generated by minimizing the sum of the squared pricing 
errors with the market price of all VIX options traded during the 2007-2010 period. RMSE reports the average 
daily root mean-squared error. NOP stands for the number of estimated parameters. 
 

Panel A:  Single Variance Component Models Panel B:  Two Variance Components Models 

SV  SVJ  SVCJ 2-SV  2-SVJ 

 3.395 ࣄ 3.897  4.510  ௦ 15.181ߢ 14.356
(0.113) (0.070) (0.063) (0.639) (0.553)

 0.273 ࣂ√ 0.238  0.208 ඥߠ௦ 0.204  0.195
(0.003) (0.003) (0.003) (0.003) (0.003)

 0.852 ࣌ 1.111  0.850  ௦ 2.372ߪ 2.394
(0.024) (0.019) (0.018) (0.119) (0.097)

ඥ0.258 ࢚ࢂ  0.187  0.205  ඥ ௦ܸ,௧ 0.163  0.149
(0.004) (0.004) (0.004) (0.003) (0.003)

 
 െ  െ  െ  ௟ 1.895ߢ 1.759

    (0.067) (0.062)
   

 െ  െ  െ ඥߠ௟ 0.391  0.382
    (0.021) (0.021)
   

 െ  െ  െ  ௟ 0.756ߪ 0.767
    (0.026) (0.024)
   

 െ  െ  െ  ඥ ௟ܸ,௧ 0.174  0.158
     (0.003) (0.003)
     

 െ ࣅ 0.444  0.468  െ ߣ  0.107
  (0.014) (0.019)   (0.005)
    

 െ ࢖ࣆ –0.203  –0.158  ௣ െߤ  –0.297
  (0.005) (0.005)   (0.009)
    

 െ ࢖࣌ 0.190  0.127  ௣ െߪ  0.168
  (0.004) (0.004)   (0.004)
    

 െ ࢜ࣆ െ  0.358   െ  െ
    (0.013)  
      

 െ ࡶ࣋ െ  –0.385   െ  െ
    (0.007)  
      

RMSE 0.233  0.150  0.122  RMSE 0.089  0.085
NOP 3  6  8  NOP 7  10
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Table 3.  Mean and Median Equality Tests 

This table reports the statistics of the two-sample t-test and the Wilcoxon signed-rank test examining whether 
there were any differences in the mean (Panel A) and median (Panel B) of the daily root mean-squared errors 
between two models of VIX options traded during the 2007-2010 period. The difference is defined by the error 
of the compared model specified in the first row minus that of the error of the selected model specified in the 
first column. The standardized test statistics are reported in the parentheses. Figures in bold text indicate 
insignificance at the 5% level. 
  

 In-sample Results Out-of-sample Results 

 SV SVJ SVCJ 2-SV SV SVJ SVCJ 2-SV 

Panel A:  Mean Equality Test  

SVJ 0.083        0.077      

(21.63)  (10.59)    

            

SVCJ 0.111  0.028      0.099 0.022    

(28.86)  (7.71)  (13.44) (2.93)    

          

2-SV 0.144  0.061  0.033   0.120 0.043 0.021   

(43.87)  (19.95)  (10.62) (16.90) (5.88) (2.80)   

      

2-SVJ 0.148  0.065  0.037 0.004 0.124 0.046 0.024  0.003

(45.35)  (21.43)  (12.04) (1.82) (17.36) (6.34) (3.26)  (0.48)

Panel B:  Median Equality Test  

SVJ 0.081        0.076      

(–26.91)  (–25.52)    

            

SVCJ 0.103  0.027      0.092 0.020    

(–27.31)  (–26.49)  (–26.35) (–23.33)    

          

2-SV 0.143  0.049  0.021   0.116 0.034 0.012   

(–27.48)  (–27.45)  (–22.72) (–27.16) (–25.23) (–16.54)   

      

2-SVJ 0.146  0.053  0.025 0.002 0.118 0.038 0.015  0.001

(–27.48)  (–27.48)  (–25.22) (‐22.71) (–27.23) (–25.80) (–19.81)  (–12.29)
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Table 4.  Pricing Improvements Attributable to Variance Jumps 

This table reports the two-sample t-test and Wilcoxon signed-rank test results examining the null hypothesis that 
the mean (Panel A) and median (Panel B) of the difference between the absolute pricing errors of the two 
models will be zero for VIX options traded during the 2007-2010 period. The pricing errors between the SVJ 
and the SVCJ models are investigated across moneyness levels and time to maturity periods. The standardized 
test statistics are reported in the parentheses. Figures in bold text indicate insignificance at the 5% level. 	
	

Time to Maturity 
Periods	

Moneyness	Levels	

DITM ITM NTM OTM DOTM All	

Panel A:  Mean Equality Test 

In-sample Results 

Short-term 0.013  0.026 0.047  0.016  0.047  0.035 
(0.85)  (7.65)  (22.50)  (8.91)  (31.29)  (24.71) 

Mid-term 0.034  0.028 0.017  0.014  0.041  0.028 
(5.29)  (11.03)  (9.66)  (11.07)  (36.60)  (28.99) 

Long-term 0.023  0.007 –0.004 –0.013 0.017  0.003 
(1.83)  (0.92)  (–0.77) (–2.62) (3.08)  (1.12) 

             

All Maturity 0.027  0.026 0.029  0.016  0.043  0.029 
(4.20)  (12.94)  (22.20)  (17.28)  (47.51)  (37.37) 

Out-of-sample Results 

Short-term 0.004  0.013 0.031  0.015  0.043  0.027 
(0.15)  (1.70)  (7.07)  (4.82)  (22.84)  (9.93) 

Mid-term 0.023  0.019 0.012  0.011  0.037  0.022 
(1.77)  (3.97)  (3.84)  (4.97)  (26.46)  (12.35) 

Long-term 0.012  0.007 –0.009 –0.016 0.010  –0.001
(0.41)  (0.46)  (–0.98) (–2.26) (1.60)  (–0.27)

     

All Maturity 0.016  0.016 0.019  0.013  0.039  0.023 
(1.35)  (3.78)  (7.62)  (7.89)  (34.48)  (15.37) 

Panel B:  Median Equality Test 

In-sample Results 

Short-term 0.004  0.017 0.032  0.008  0.045  0.025 
(–4.33)  (–19.21) (–33.06) (–15.11) (–48.58)  (–60.86)

Mid-term 0.021  0.015 0.011  0.013  0.032  0.018 
(–15.79)  (–21.63) (–22.27) (–25.12) (–48.43)  (–63.36)

Long-term 0.010  0.003 –0.008 –0.015 0.008  –0.002
(–4.63)  (–2.91) (–3.31) (–9.36) (–6.20)  (–0.21)

             

All Maturity 0.015  0.015 0.016  0.009  0.036  0.019 
(–16.28)  (–29.02) (–38.18) (–26.47) (–68.86)  (–86.73)

Out-of-sample Results 

Short-term 0.003  0.009 0.023  0.008  0.041  0.020 
(–1.42)  (–9.82) (–21.68) (–13.70) (–42.62)  (–46.31)

Mid-term 0.009  0.010 0.008  0.008  0.029  0.013 
(–7.97)  (–14.23) (–14.30) (–17.43) (–42.69)  (–47.51)

Long-term 0.006  0.002 –0.006 –0.015 0.009  –0.003
(–1.86)  (–1.37) (–3.92) (–7.98) (–4.48)  (–2.36)

     

All Maturity 0.007  0.009 0.011  0.007  0.033  0.015 
(–7.70) (–17.20) (–24.47) (–20.00) (–60.30) (–64.96)
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Table 5.  Pricing Improvements Attributable to the Second Variance Component 

This table reports the two-sample t-test and Wilcoxon signed-rank test results examining the null hypothesis that 
the mean (Panel A) and median (Panel B) of the difference between the absolute pricing errors of the two 
models will be zero for VIX options traded during the 2007-2010 period. The pricing errors between the SVJ 
and the 2-SVJ models are investigated across moneyness levels and time to maturity periods. The standardized 
test statistics are reported in the parentheses. Figures in bold text indicate insignificance at the 5% level. 
	

Time to Maturity 
Periods	

Moneyness	Levels	

DITM ITM NTM OTM DOTM All	

Panel A:  Mean Equality Test 

In-sample Results 

Short-term 0.160  0.072 0.051  0.037  0.056  0.059 
(12.74)  (23.72)  (25.13)  (23.56)  (41.32)  (48.53) 

Mid-term 0.106  0.053 0.035  0.030  0.050  0.048 
(19.83)  (24.21)  (22.18)  (25.26)  (47.81)  (57.52) 

Long-term 0.069  0.059 0.032  0.037  0.055  0.047 
(6.53)  (8.61)  (6.29)  (8.88)  (11.94)  (18.88) 

             

All Maturity 0.120  0.061 0.042  0.034  0.052  0.052 
(22.69)  (34.57)  (33.93)  (40.09)  (64.14)  (76.45) 

Out-of-sample Results 

Short-term 0.059  0.025 0.030  0.023  0.046  0.034 
(2.20)  (3.36)  (6.95)  (7.55)  (25.49)  (13.09) 

Mid-term 0.068  0.033 0.022  0.020  0.043  0.034 
(5.64)  (7.14)  (7.45)  (9.31)  (31.59)  (19.95) 

Long-term 0.079  0.049  0.015  0.025  0.043  0.036 
(3.12)  (3.40)  (1.76)  (4.04)  (7.58)  (7.71) 

     

All Maturity 0.066  0.030 0.025  0.022  0.044  0.034 
(5.70)  (7.42)  (10.15)  (13.68)  (41.16)  (23.79) 

Panel B:  Median Equality Test 

In-sample Results 

Short-term 0.080  0.051 0.035  0.025  0.047  0.040 
(–16.86)  (–28.25) (–30.58) (–29.55) (–54.51)  (–73.94)

Mid-term 0.068  0.036 0.028  0.025  0.043  0.035 
(–24.03)  (–27.86) (–28.90) (–31.44) (–51.54)  (–75.29)

Long-term 0.041  0.051 0.024  0.024  0.032  0.030 
(–6.84)  (–9.35) (–8.31) (–11.31) (–12.99)  (–22.17)

             

All Maturity 0.070  0.043 0.030  0.025  0.044  0.037 
(–30.05)  (–40.77) (–42.81) (–44.54) (–75.37)  (–107.68)

Out-of-sample Results 

Short-term 0.028  0.017 0.023  0.016  0.041  0.029 
(–5.91)  (–9.27) (–17.24) (–18.83) (–46.90)  (–45.98)

Mid-term 0.038  0.021 0.017  0.018  0.039  0.027 
(–11.06)  (–14.09) (–16.48) (–19.54) (–44.45)  (–49.74)

Long-term 0.047  0.027 0.008  0.014  0.027  0.020 
(–4.47)  (–5.27) (–2.54) (–5.88) (–9.63)  (–12.65)

     

All Maturity 0.035  0.020 0.019  0.017  0.040  0.027 
(–13.12)  (–17.37) (–23.88) (–27.77) (–64.46)  (–68.85)
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Table 6.  Pricing Improvements Attributable to Variance Jumps When the Second 

Variance Component is Specified 

This table reports the two-sample t-test and Wilcoxon signed-rank test results examining the null hypothesis that 
the mean (Panel A) and median (Panel B) of the difference between the absolute pricing errors of the two 
models will be zero for VIX options traded during the 2007-2010 period. The pricing errors between the 2-SVJ 
and the 2-SVCJ models are investigated across moneyness levels and time to maturity periods. The standardized 
test statistics are reported in the parentheses. Figures in bold text indicate insignificance at the 5% level.	
	

Time to Maturity 
Periods	

Moneyness	Levels	

DITM ITM NTM OTM DOTM All	

Panel A:  Mean Equality Test 

In-sample Results 

Short-Term 0.0081  0.0071 0.0091  0.0072  0.0071  0.0076 
(0.85)  (3.06) (5.91)  (6.32)  (7.36)  (8.52) 

Mid-Term 0.0033  0.0041 0.0050  0.0041  0.0038  0.0041 
(0.88)  (2.74) (4.06)  (4.32)  (5.31)  (6.97) 

Long-Term –0.0013 –0.0011 0.0022  0.0009  0.0061  0.0021 
(–0.17) (–0.20) (0.52)  (0.30)  (2.16)  (1.15) 

  

All 0.0045  0.0052 0.0067  0.0056  0.0052  0.0055 
(1.16)  (3.99) (7.05)  (8.60)  (9.18)  (11.04) 

Out-of-sample 

Short-Term 0.0047  0.0053 0.0054  0.0042  0.0053  0.0050 
(0.19)  (0.75) (1.27)  (1.42)  (3.36)  (2.01) 

Mid-Term 0.0042  0.0025 0.0029  0.0025  0.0022  0.0026 
(0.38)  (0.58) (1.01)  (1.25)  (1.83)  (1.64) 

Long-Term –0.0000 –0.0001 0.0028  0.0009  0.0052  0.0023 
(–0.00) (–0.00) (0.36)  (0.18)  (1.22)  (0.56) 

  

All 0.0041  0.0036 0.0040  0.0032  0.0035  0.0036 
(0.38)  (0.93) (1.65)  (2.08)  (3.80)  (2.64) 

Panel B:  Median Equality Test 

In-sample Results 

Short-Term 0.0005  0.0005 0.0014  0.0009  0.0012  0.0010 
(–4.82) (–8.35) (–16.67) (–16.36) (–20.72) (–31.97)

Mid-Term 0.0001  0.0006 0.0004  0.0003  0.0004  0.0004 
(–3.64) (–8.97) (–10.02) (–10.78) (–13.68) (–22.03)

Long-Term –0.0001 0.0000 0.0006  0.0001  0.0005  0.0002 
(–0.26) (–0.11) (–2.07) (–1.21) (–3.73) (–3.54)

  

All 0.0003  0.0006 0.0007  0.0005  0.0007  0.0006 
(–5.55) (–12.00) (–18.80) (–18.82) (–24.05) (–37.54)

Out-of-sample Results 

Short-Term 0.0002  0.0003 0.0006  0.0004  0.0006  0.0005 
(–2.54) (–5.64) (–8.84) (–8.61) (–14.42) (–19.28)

Mid-Term 0.0004  0.0003 0.0003  0.0001  0.0002  0.0002 
(–2.97) (–4.97) (–6.89) (–6.71) (–7.89) (–13.59)

Long-Term –0.0005 –0.0002 0.0003  0.0003  0.0003  0.0002 
(–0.12) (–0.08) (–1.36) (–1.11) (–2.35) (–2.38)

  

All 0.0003  0.0003 0.0004  0.0002  0.0003  0.0003 
(–3.71) (–7.28) (–11.11) (–10.75) (–15.44) (–22.84)
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Table 7.  Mean and Median Equality Tests for Only Short-Term VIX Options 
This table reports the two-sample t-test (in-sample) and Wilcoxon signed-rank test (out-of-sample) results 
examining whether the mean (Panel A) and median (Panel B) of the daily root mean-squared errors between the 
two models differ for only short-term VIX options traded during the 2007-2010 period. The difference is defined 
by the error of the compared model specified in the first row minus that of the selected model specified in the 
first column. The standardized test statistics are reported in the parentheses. Figures in bold text indicate 
insignificance at the 5% level. 
 

 In-sample Results  Out-of-sample Results 

 SV SVJ SVCJ 2-SV  SV SVJ SVCJ 2-SV 

Panel A:  Mean Equality Test   

SVJ 0.056     0.050    
(15.29)  (5.81)    

            
SVCJ 0.102 0.046   0.082 0.031  

(28.53)  (15.17)  (9.30) (3.53)   
          

2-SV 0.107 0.051 0.005 0.072 0.021 –0.010
(32.72)  (19.08)  (1.85) (7.89) (2.34)  (–1.04) 

        
2-SVJ 0.113 0.057 0.011 0.006 0.080 0.030 –0.001 0.008

(34.85)  (21.61)  (4.26) (2.94) (9.07) (3.35)  (–0.15)  (0.89)

Panel B:  Median Equality Test   

SVJ 0.056    0.049    
(–25.58)  (–23.88)    

    
SVCJ 0.091 0.043   0.071 0.025  

(–27.36)  (–27.31)  (–25.75) (–23.34)   
 

2-SV 0.096 0.044 0.000 0.067 0.021 –0.003
(–27.42)  (–25.68)  (–2.92) (–24.20) (–18.21)  (–8.29) 

 
2-SVJ 0.099 0.051 0.003 0.001 0.071 0.025 –0.001 0.001

(–27.44)  (–27.36)  (–10.18) (–15.09) (–24.89) (–21.23)  (–1.41)  (–12.48)
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Table 8.  Summary of Pricing Error 

This table reports the in-sample (IS) and out-of-sample (OS) ‘root mean-squared error’ (RMSE) averages for all 
of the SV models examined in this study under three different scenarios: Scenario 1 examines daily data on the 
RMSE for VIX options in all time-to-maturity periods; Scenario 2 is based on the monthly estimation for VIX 
options in all time-to-maturity periods; and Scenario 3 examines daily data on short-term VIX options only. The 
RMSE is averaged across trading days/months in Panel A and transactions in Panel B. Panel C reports the 
percentages of trading days in which the RMSE of the SVCJ model outperformed that of the 2-SV and 2-SVJ 
models. The sample period runs from 2007 to 2010, with the short-term VIX options being defined by τ ൏ 

60/365. 
 

Models 

Scenario 1 

(Daily) 
 

Scenario 2 

(Monthly) 
 

Scenario 3 

(Daily) 

IS OS  IS OS  IS OS 

Panel A:  Average Daily/Monthly RMSE 

SV 0.233  0.298 0.396 0.651 0.152  0.250
SVJ 0.150  0.220 0.324 0.594 0.096  0.200
SVCJ 0.122  0.198 0.322 0.592 0.050  0.169
2SV 0.089  0.178 0.193 0.517 0.045  0.178
2SVJ 0.085  0.174 0.187 0.516 0.039  0.170

Panel B:  Average Transaction RMSE 

SV 0.267  0.367 0.499 0.972 0.204  0.358
SVJ 0.181  0.302 0.422 0.926 0.139  0.319
SVCJ 0.155  0.287 0.421 0.925 0.103  0.299
2SV 0.111  0.265 0.247 0.816 0.078  0.317
2SVJ 0.107  0.263 0.242 0.816 0.073  0.302

Panel C:  SVCJ Advantage Ratio (%) Compared to 2-SV and 2-SVJ Models 

2SV 16.1  27.6 0.0 21.3 49.4  63.6
2SVJ 10.6  22.2 0.0 19.1 40.3  52.5

 



44 

Table 9.  Jumps in Short- and Long-run Variance Components 

This table reports the percentages of trading days exhibiting variance jumps in short-run variance component 
(with a rapid reversion speed) and long-run variance components (with a slower reversion speed) under the 
2-SVCJ model. The mean reversion speed denotes the mean level of the estimated speed of mean reversion ߢ௦ 
and ߢ௟. Panel A reports the results for all the trading days with variance jumps, with Panel B (Panel C) reporting 
the results for subgroups with ߢ௦/	ߢ௟ which are ൑ or ൒ specific quantiles sorted by ߢ௦/	ߢ௟, the ratio between 
the two mean-reversion speeds. 
 

Variables 
Mean Reversion Speed Trading Days (%) 

 ௟ ௦ܸ ௟ܸߢ ௦ߢ

Panel A:  All Trading Days with Variance Jumps 

 13.370    1.902     30.7 69.3 

Panel B:  Subgroups with /࢙ࣄ	࢒ࣄ ൑ Specific Quantiles 

  ൑ Quantile 50 8.958    3.232     33.2 66.8 
  ൑ Quantile 25 6.312    4.053     34.8 65.2 
  ൑ Quantile 10 5.389    4.668     48.0 52.0 

Panel C:  Subgroups with /࢙ࣄ	࢒ࣄ ൒ Specific Quantiles 

  ൒ Quantile 50 17.782    0.571     28.3 71.7 
  ൒ Quantile 75 19.030    0.119     22.5 77.5 
  ൒ Quantile 90 21.359    0.027     21.3 78.7 
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Table 10.  Summary of Pricing Errors During the Financial Crisis Period 

This table reports the in-sample (IS) and out-of-sample (OS) ‘root mean-squared error’ (RMSE) averages for all 
of the SV models examined in this study during the financial crisis period (December 2007 to May 2009) under 
three different scenarios: Scenario 1 examines daily data on the RMSE for VIX options in all time-to-maturity 
periods; Scenario 2 is based on the monthly estimation for VIX options in all time-to-maturity periods; and 
Scenario 3 examines daily data on short-term VIX options only. The RMSE is averaged across trading 
days/months in Panel A and transactions in Panel B. Panel C reports the percentages of trading days in which the 
RMSE of the SVCJ model outperformed that of the 2-SV and 2-SVJ models. The sample period runs from 2007 
to 2010, with the short-term VIX options being defined by τ ൏ 60/365. 
 

Models 

Scenario 1 

(Daily) 
 

Scenario 2 

(Monthly) 
 

Scenario 3 

(Daily) 

IS OS  IS OS  IS OS 

Panel A:  Average Daily/Monthly RMSE 

SV 0.228  0.320 0.452 0.841 0.150  0.287
SVJ 0.181  0.283 0.385 0.802 0.112  0.252
SVCJ 0.159  0.266 0.385 0.803 0.066  0.229
2SV 0.104  0.230 0.219 0.702 0.052  0.238
2SVJ 0.100  0.226 0.214 0.695 0.050  0.230

Panel B:  Average Transaction RMSE 

SV 0.271  0.426 0.626 1.336 0.223  0.456
SVJ 0.233  0.402 0.548 1.296 0.190  0.434
SVCJ 0.214  0.391 0.547 1.297 0.159  0.419
2SV 0.143  0.353 0.312 1.144 0.114  0.445
2SVJ 0.138  0.350 0.310 1.135 0.113  0.421

Panel C:  SVCJ Advantage Ratio (%) Compared to 2-SV and 2-SVJ Models 

2SV 1.6  16.3 0.0 16.7 38.7  51.2
2SVJ 2.9  16.5 0.0 16.7 42.4  57.3
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Table 11.  Pricing Errors for Alternative Weighting Schemes 

This table reports the pricing errors obtained from three minimizations in the SV, SVJ, SVCJ and 2-SV models 
during the first quarter of 2007 and the third quarter of 2008. RMSE denotes the root mean-squared error from 
minimization (11), RMSRE denotes the root mean-squared relative error from minimization (12) and IVRMSE 
denotes the implied volatility root mean-squared error from minimization (13). 
 

Models RMSE RMSRE IVRMSE 

Panel A:  In-sample Results 

SV 0.143 0.172 0.083 
SVJ 0.096 0.103 0.053 
SVCJ 0.077 0.079 0.038 
2-SV 0.058 0.053 0.023 

Panel B:  Out-of-sample Results 

SV 0.183 0.300 0.221 
SVJ 0.144 0.198 0.166 
SVCJ 0.129 0.152 0.152 
2-SV 0.116 0.133 0.119 
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Figure 1.  Fitting Points and Fitting Performance  

This figure illustrates the fitting points in our approximation with different fitting area choices (k = 3 and k = 6) 
and different numbers of exponential curves (N = 1 and N = 4) under the SVCJ model with the following 
parameters (based on Duffie et al., 2000): ߢଵ=3.5, ߠଵ=0.01, ߪଵ=0.15, ߤ̅ ,0.5=ߣ ൌ െ0.1, ߤ௩=0.05, ߪ௣=0.0001, 
௃ߩ ൌ െ0.4 , ଵܸ,௧=0.008,  and moneyness, ݉=1. The solid curves depict the target function ,1=߬ ,0.03=ݎ	

ඥܣ ൅ ൛௑೅ஹ௄మି஺ൟܫ	்ܺ  and the dashed curves depict the approximations (10). The fitting points ܺ௡
ሺ௞ሻ  and 

௡ܯ
ሺ௞ሻ ≡ ൫ܺ௡

ሺ௞ሻ ൅ ܺ௡ିଵ
ሺ௞ሻ ൯/2, ݊ ൌ 1,2, … , ܰ, are detailed in Appendix A. 
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Figure 2.  Estimated Volatility for Single- and Two-variance Models 
Fig.2a illustrates the estimated volatility ඥ ௧ܸ  for the SV, SVJ, and SVCJ models, whilst Fig.2b and 2c 

respectively illustrate the estimated short-run volatility ඥ ௦ܸ,௧ and long-run volatility ඥ ௟ܸ,௧ for the 2-SV and 
the 2-SVJ models. The estimates are generated by minimizing the sum of the squared pricing errors with the 
market prices of VIX options traded during 2007-2010 sample period. 
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Figure 3.  VIX Futures Term Structure 

This figure illustrates four typical patterns of term structure drawn from the market prices of VIX futures 
observed on 11 December 2009 (upward-sloping), 24 October 2008 (downward-sloping), 6 March 2007 
(U-shaped) and 7 April 2009 (hump-shaped). The solid curve denotes the term structure constructed by 
interpolating the market prices of VIX futures using cubic splines, whilst the remaining curves denote the 
theoretical term structures with calibrated parameters of the SV, SVCJ and 2-SV models using our 
approximation with (k, N) = (6,4). 
 
 

  

Time to Maturi ty Time to  Maturi ty

Time to  Maturi ty Time to  Maturi ty

Fig.3a  Upward-sloping, 11 Dec 2009

26.8

25.8

27.8

28.8
V

IX
 F

ut
ur

es
 P

ri
ce

160
365

 40
365

 80
365

120
365

Fig.3b  Downward-sloping, 24 Oct 2008

42

37

47

52

57

160
365

 40
365

 26
365

 80
365

120
365

Fig.3c  U-shaped, 6 Mar 2007

14.0

14.5

15.0

15.5

V
IX

 F
ut

ur
es

 P
ri

ce

350
365

 15
365

150
365

 50
365

250
365

Fig.3d  Hump-shaped, 7 Apr 2009

40

41

42

43

160
365

 40
365

 80
365

120
365

  8
365

SVCJ
SV
Market

2-SV

SVCJ
SV
Market

2-SV

SVCJ
SV
Market

2-SV

SVCJ
SV
Market

2-SV



50 

 

Figure 4.  Changes in VIX Futures Term Structure 

This figure illustrates changes in VIX futures term structures on two consecutive trading days. The curves are 
obtained using cubic splines, with the marked points around the curves being the observed market prices of VIX 
futures. Fig.4a reveals the parallel shift observed on 10 August 2009 (solid line) and 11 August 2009 (dashed 
line), whilst Fig.4b reveals the non-parallel shift observed on 14 March 2007 (solid line) and 15 March 2007 
(dashed line). 
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Figure 5.  In-sample Root Mean-Squared Errors (RMSE) 
This figure illustrates the root mean-squared errors (RMSE) over time for the SVJ, SVCJ and 2-SVJ models. 
Fig.5a (Fig.5b) shows the daily (monthly) estimates on the full sample data, whilst Fig.5c shows the daily 
estimates based upon the short- term data only.  
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Figure 6.  Jumps in Short- and Long-run Variance Components 

This figure illustrates the sensitivity of VIX call prices to variance jumps (ߤ௩) and time to maturity (߬) under the 
2-SVCJ model with the parameters based upon our estimation results, ߢ௦=12,	ߢ௟=2, ඥߠ௦=ඥߠ௟=0.2, ߪ௦=2, 

௟=0.75, ඥߪ ௦ܸ,௧=ඥ ௟ܸ,௧=0.15, ߤ ,0.25=ߣ௣ ൌ െ0.25, ߪ௣=0.15, ߤ௩ ∈ ሼ0.01,0.02, … ,0.20ሽ, ߩ௃ ൌ െ0.4, 0.03=ݎ, 
߬ ∈ ሼ0.05,0.10, … ,1.0ሽ, and strike price 28=ܭ. 
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Appendix A.  Closed-form Approximation for VIX Derivatives 

The Fitting Scheme 

As noted earlier in Section 2.3, N exponential curves are used to approximate the target 

payoff in the interval ቂܺ଴
ሺ௞ሻ, ܺே

ሺ௞ሻቃ, which covers k standard deviations around the mean of the 

state variable, XT. This approach, which identifies how much information is incorporated, is 

expressed as: 

ܺ଴
ሺ௞ሻ ൌ maxሼܭଶ െ ,ܣ ߤ െ ሽ  and  ܺேߜ݇

ሺ௞ሻ ൌ maxሼܭଶ െ ,ܣ ሽߤ ൅  ,ߜ݇

where ߤ and ߜ, which respectively denote the mean and the standard deviation of ்ܺ, are 

derived from the Lemma (below).  

As regards the choice of the other fitting points, { ଵܺ
ሺ௞ሻ, ܺଶ

ሺ௞ሻ, … , ܺேିଵ
ሺ௞ሻ }, the 

equally-divided partition is the simplest candidate; however, in order to fit the target more 

effectively, we follow Liu (2010) to determine the partitions according to their curvature 

levels, as follows: 

ܺ௡
ሺ௞ሻ ൌ ቎

ሺேି௡ሻට஺ା௑బ
ሺೖሻ	ା௡ට஺ା௑ಿ

ሺೖሻ

ே
቏

ଶ

െ  ሺA1ሻ               ,ܣ

where ݊ ൌ 1, 2, … , ܰ െ 1. 

Liu (2010) demonstrated that the linear approximation with partition points which 

satisfies the non-linear equations ݂ ′ሺܺ௡ሻ ൌ
௙ሺ௑೙శభሻି௙ሺ௑೙షభሻ

௑೙శభି௑೙షభ
, fits the target payoff more 

effectively than that with an equally-divided partition, where f denotes the target function. 

We can derive Equation (A1) by applying mathematical induction and then setting 

݂ሺݔሻ ൌ ܣ√ ൅  Although Liu (2010) considered linear curve fitting, our non-tabulated .	ݔ

results indicate that the performance of exponential curve fitting using the curvature partition 

also dominates the curve fitting approach using the equally-divided partition ܺ௡ ൌ

ሺேି௡ሻ௑బା௡௑ಿ
ே

. 
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LEMMA. (MEAN AND VARIANCE)  The mean ॱ௧
ℚሾ∙ሿ  and the variance ॽ௧

ℚሾ∙ሿ  of the 
instantaneous variance ௝ܸ,௧ାఛ, ݆ ൌ 1,2, can be derived from 

 

ॱ௧
ℚൣ ௝ܸ,௧ାఛ൧ ൌ ൣ݁ି఑ೕఛ ௝ܸ,௧ ൅ ௝ሺ1ߠ െ ݁ି఑ೕఛሻ൧ ൅ ߣ ቂఓೡ

఑భ
ሺ1 െ ݁ି఑భఛሻቃ ,ሼ௝ୀଵሽܫ

ॽ௧
ℚൣ ௝ܸ,௧ାఛ൧ ൌ

ఙೕ
మ

఑ೕ
ሺ1 െ ݁ି఑ೕఛሻ ൬݁ି఑ೕఛ ௝ܸ,௧ ൅

ఏೕ
ଶ
ሺ1 െ ݁ି఑ೕఛሻ൰

൅	ߣ ቂఙభ
మఓೡ
ଶ఑భ

మ ሺ1 െ ݁ି఑భఛ	ሻଶ ൅ ఓೡమ

఑భ
ሺ1 െ ݁ିଶ఑భఛሻቃ ,ሼ௝ୀଵሽܫ

										 

where ܫሼ⋅ሽ denotes the indicator function, and the mean and variance of ்ܺ can be derived 

from ߤ ൌ ଵॱ௧ܤ
ℚൣ ଵܸ,௧ାఛ൧ ൅ ଶॱ௧ܤ

ℚൣ ଶܸ,௧ାఛ൧and ߜଶ ൌ ଵܤ
ଶॽ௧

ℚൣ ଵܸ,௧ାఛ൧ ൅ ଶܤ
ଶॽ௧

ℚൣ ଶܸ,௧ାఛ൧.
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For each exponential curve, ௡݂
෩ ൌ ܽ௡ ൅ ܾ௡݁௖೙௫, ݊ ൌ 1,2, … , ܰ, we fit the two endpoints 

and the midpoint of each sub-interval ቂܺ௡ିଵ
ሺ௞ሻ , ܺ௡

ሺ௞ሻቃ to solve the corresponding parameters 

ሺܽ௡, ܾ௡, ܿ௡ሻ as follows: 

ܿ௡ ൌ
ଶ

௑೙
ሺೖሻି௑೙షభ

ሺೖሻ ݈݊ ቈቆටܣ ൅ ܺ௡
ሺ௞ሻ	 െ ටܣ ൅ܯ௡

ሺ௞ሻ	ቇ / ቆටܣ ൅ܯ௡
ሺ௞ሻ െ ටܣ ൅ ܺ௡ିଵ

ሺ௞ሻ ቇ቉,       

ܾ௡ ൌ 	ቆටܣ ൅ ܺ௡
ሺ௞ሻ െ ටܣ ൅ ܺ௡ିଵ

ሺ௞ሻ ቇ / ቀ݁௖೙௑೙
ሺೖሻ
െ ݁௖೙௑೙షభ

ሺೖሻ
ቁ,																													       ሺA2ሻ 

ܽ௡ ൌ 	ටܣ ൅ ܺ௡ିଵ
ሺ௞ሻ െ ܾ௡݁௖೙௑೙షభ

ሺೖሻ
,																																																																																																						 

where ܯ௡
ሺ௞ሻ ≡ ଵ

ଶ
ቀܺ௡ିଵ

ሺ௞ሻ ൅ ܺ௡
ሺ௞ሻቁ denotes the midpoint of ቂܺ௡ିଵ

ሺ௞ሻ , ܺ௡
ሺ௞ሻቃ. Thus, all of the fitting 

points ቄܺ଴
ሺ௞ሻ,ܯଵ

ሺ௞ሻ, ଵܺ
ሺ௞ሻ,ܯଶ

ሺ௞ሻ, ܺଶ
ሺ௞ሻ, … , ேܯ

ሺ௞ሻ, ܺே
ሺ௞ሻቅ  are uniquely determined for given 

levels of N and k.44  

The payoff for the remaining range of ்ܺ ൒ ܺே
ሺ௞ሻ  is approximated by the terminal 

function ே݂
෪, an approach which can reduce the fitting error, particularly when the tail 

probabilities are non-trivial. 

 

                                                 
43 The technical details are available on request from the authors. 
44 Although selecting the midpoint is the simplest way to solve the parameters, it is not the only way. If we choose 

௡ܯ
ሺ௞ሻ according to the curvature rule, the corresponding parameters ሺܽ௡, ܾ௡, ܿ௡ሻ are difficult to solve. However, 

as the pricing error rapidly converges to zero, the choice of ܯ௡
ሺ௞ሻ is not a major issue here; nevertheless, the linear 

approximation has only two parameters that can be uniquely determined by the endpoints ܺ௡ିଵ and ܺ௡. 
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Closed-Form Approximation  

Following Duffie et al. (2000) and Bates (2000) to define the instrumental function, 

ሻݕ௔,௕ሺܩ ≡ ॱ௧
ℚൣ݁௔∙௑೅ܫሼ௕∙௑೅ஸ௬ሽ൧. Under the affine model, Equations (1)–(5), the ܩ௔,௕ function 

can be derived by the Fourier transform as: 

ሻݕ௔,௕ሺܩ ൌ
߰൫ܽ; ଵܸ,௧, ଶܸ,௧, ߬൯

2
െ න

1
ݒߨ

൫ܽ߰ൣ݃ܽ݉ܫ ൅ ;ܾݒ݅ ଵܸ,௧, ଶܸ,௧, ߬൯݁ି௜௩௬൧݀ݒ
ஶ

଴
, ሺA3ሻ 

where ݃ܽ݉ܫሾ⋅ሿ  denotes the imaginary part of a complex number, ݅ ൌ √െ1 , 

߰൫ݖ; ଵܸ,௧, ଶܸ,௧, ߬൯ ≡ ߰ଵ൫ݖ; ଵܸ,௧, ߬൯߰ଶሺݖ; ଶܸ,௧, ߬ሻ, and 

߰௝ሺݖ; ௧ܸ, ߬ሻ ൌ ݁ఈೕ൫஻ೕ௭,ఛ൯ାఉೕ൫஻ೕ௭,ఛ൯௏೟ାఒఊೕ൫஻ೕ௭,ఛ൯, ݆ ൌ 1, 2,							  ሺA4ሻ 

with 

,ݖ௝ሺߙ ߬ሻ ൌ െ
ଶ఑ೕఏೕ
ఙೕ
మ ݈݊ ൤1 െ

ఙೕ
మ

ଶ఑ೕ
ሺ1 െ ݁ି఑ೕఛሻݖ൨ , ݆ ൌ 1, 2,

,ݖ௝ሺߚ ߬ሻ ൌ
ଶ఑ೕ௭

ఙೕ
మ௭ାቀଶ఑ೕିఙೕ

మ௭ቁ௘ഉೕഓ
, ݆ ൌ 1, 2,

,ݖଵሺߛ ߬ሻ ൌ ଶఓೡ
ଶ఑భఓೡିఙభ

మ ݈݊ ቂ1 ൅
൫ଶ఑భఓೡିఙభ

మ൯௭

ଶ఑భሺଵିఓೡ௭ሻ
ሺ1 െ ݁ି఑భఛሻቃ ,

								  ሺA5ሻ 

and ߛଶሺݖ, ߬ሻ ൌ 0. It should be noted that when ଶܸ,௧ ൌ ଶߠ ൌ 0 (that is, the SVCJ model), the 

analytic solutions, Equations (A4) and (A5), reduce to those of Lian and Zhu (2013). 

The risk-neutral probability of a VIX option which is expiring ‘in the money’ 

௧ݎܲ
ℚሺ்ܸܺܫ ൒ ܣ଴,ିଵሺܩ ሻ can subsequently be exactly solved byܭ െ ଴ܭ

ଶሻ, and the risk- neutral 

expectation of the substitute payoff can be expressed as: 

ܽଵܩ଴,ିଵ ቀെܺ଴
ሺ௞ሻቁ ൅ ܾଵܩ௖భ,ିଵ ቀെܺ଴

ሺ௞ሻቁ 

൅∑ ቂሺܽ௡ାଵ െ ܽ௡ሻܩ଴,ିଵ ቀെܺ௡
ሺ௞ሻቁ ൅ ܾ௡ାଵܩ௖೙శభ,ିଵ ቀെܺ௡

ሺ௞ሻቁ െ ܾ௡ܩ௖೙	,ିଵ ቀെܺ௡
ሺ௞ሻቁቃேିଵ

௡ୀଵ .   ሺA6ሻ 

We obtain the closed-form approximation by expanding the ܩ௔,௕ functions in Equation 

(A6) by Equation (A3) and rewriting Equation (9). It should be noted that each ܩ௔,௕ includes 

one integral that can be efficiently computed, whilst the approximation for VIX options 
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requires 3N integrals.45 As a result, in Proposition 1, we rearrange the formula to become a 

single integral formula only, which yields a more computationally efficient result. 

Appendix B.  Numerical Analysis 

In order to examine the accuracy of our approximations, we first of all construct the exact 

solution (Exact) using a time-consuming double-integral method which is similar to the 

benchmark of Cheng et al. (2012). By definition, the VIX option can be expressed as an 

integral containing the conditional probability density function (p.d.f.) of the instantaneous 

variance ݂ሺ்ܺ|ܺ௧ሻ, expressed as: 

,ܭ	௧ሺܥ ߬, ሻݎ ≡ 	100݁ି௥ఛ න ൫ඥܣ ൅ ்ܺ െ .଴൯݂ሺ்ܺ|ܺ௧ሻ்݀ܺܭ
ାஶ

௄బ
మି஺

													ሺB1ሻ 

In particular, the conditional p.d.f. of XT can be solved by: 

݂ሺ்ܺ|ܺ௧ሻ 	≡ 	
݀
ݕ݀

௧ݎܲ
ℚሺ்ܺ ൑ ሻݕ 	ൌ 	

1
ߨ
න ܴ݈݁ܽൣ߰ሺ݅ݒሻ݁ି௜௩௬൧݀ݒ
ஶ

଴
,												ሺB2ሻ 

where ܴ݈݁ܽሾ⋅ሿ is the real part of a complex number. For simplicity, ߰൫ݖ; ଵܸ,௧, ଶܸ,௧, ߬൯ is 

denoted by ߰ሺݖሻ in the present study. The benchmark value can then be constructed via 

numerical methods, such as the Simpson method.46 

For the approximation error, we consider two measurements, the root mean- squared 

error (RMSE) and root mean-squared relative error (RMSRE) defined as: 

 RMSE ൌ ටଵ

௡
∑ ൫ܥ௝ െ ௝ܥ

∗൯
ଶ௡

௝ୀଵ ,																																									ሺB3ሻ 

 RMSRE ൌ ඨଵ

௡
∑ ൬

஼ೕି஼ೕ
∗

஼ೕ
∗ ൰

ଶ
௡
௝ୀଵ ,																																												ሺB4ሻ 

where ݊ is the number of the observations, ܥ௝ denotes the approximated values and ܥ௝
∗ 

denotes the benchmark values. To analyze the computational efficiency, we report the total 

                                                 
45 Specifically, the exponential approximation, Equation (A6), requires 3ܰ െ 1 integrals, with the last term in 

Equation (9), ܲݎ௧
ℚሺ்ܸܺܫ ൒  .ሻ, requiring one integralܭ

46 To calculate the improper integral in (B1), we take the upper limit of the integral as ߤ ൅  which is ,ߜ20
sufficiently large, and adopt the Simpson method with 20,000 subintervals of equal length. To calculate the 
improper integrals in ݂ሺ்ܺ|ܺ௧ሻ and equation (B2), we choose the upper limit of the integral as 10ସ. 
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computing time (Time) obtained by the Matlab package on Microsoft Windows 7 based on 

Intel® Core™ i7-2600M CPU @ 3.40GHz and 8.00GB RAM. 

Table B1 reports the VIX option prices under the SVCJ model with parameters based on 

Duffie et al. (2000): ߢଵ=3.5, ߠଵ=0.01, ߪଵ ߣ ,{0.20 ,0.15 ,0.10}∋ ߤ̅ ,{0.6 ,0.5 ,0.4}∋ ൌ െ0.1, 

௃ߩ ,௣=0.0001ߪ ,௩=0.05ߤ ൌ െ0.4, ଵܸ,௧=0.008. The other parameters are set as ݎ ൌ 0.03, 

߬ ൌ 1, and moneyness, ݉ ∈ ሼ0.85,1.00,1.15ሽ. For comparison, Table B1 also uses the Lian 

and Zhu (2013) pricing formula, which provides a closed-form expression for VIX option 

prices under the SVCJ model; however, this formula involves a complex error function which 

still requires numerical approximation.47 

<Table B1 is inserted about here> 

The results in Table B1 show that the RMSREs for our approximations of (k, N) = (3,1), 

(3,2), (3,4) and (3,8) are respectively 4.42%, 0.97%, 0.39%, and 0.29%, and the RMSREs for 

approximations of (k, N) = (6,1), (6,2), (6,4) and (6,8) are respectively 8.67%, 1.76%, 0.19% 

and 0.02%. As regards the computational time for calculating 27 VIX option prices, our 

respective (k, N) = (3,1), (3,2), (3,4) and (3,8) approximations take 0.04, 0.08, 0.18 and 0.35 

seconds, whilst the (k, N) = (6,1), (6,2), (6,4) and (6,8) approximations take 0.04, 0.12, 0.31 

and 0.72 seconds. 

For a given k, the role of N is a trade-off between accuracy and computational burdens. As 

the components in the VIX option formula, Equation (13), are proportional to the number of 

exponential curves, the growth in computing time is in the order of N; however, the pricing 

error decays rapidly. As compared to Lian and Zhu (2013), Table B1 shows that our 

approximation with (k, N) = (6,4) is a more efficient method of valuing VIX options since our 

approximation performs with similar accuracy, but requires much less computational time, 

                                                 
47 We use the Matlab function “mfun(‘erf’,-)” to calculate the complex error function, selecting ߶ோ ൌ 1. It 
should be noted that in the Lian and Zhu (2013) formula, ߶ோ is a positive number, as defined in their Equation 
(A7), and is theoretically independent of the VIX option price.  
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operating as much as eighty times faster. 

The VIX option prices under two-variance models require more computing time due to the 

more complex integrands. Our non-tabulated results show that to calculate 27 VIX option 

prices under the 2-SVJ model with parameters based on Bates (2000), our approximations with 

(k, N) = (3,1), (3,2), (3,4) and (3,8) take 0.09, 0.28, 0.62, and 1.21 seconds and our 

approximations with (k, N) = (6,1), (6,2), (6,4) and (6,8) take 0.09, 0.41, 1.16, and 2.54 

seconds, respectively.48 Since the empirical estimation in this study involves a large number of 

data observations and minimizes highly complicated error functions, our proposed method 

offers an ideal approach for this type of empirical analysis. 

Appendix C.  VIX Futures Single-variance Models Term Structure 

In an attempt to theoretically explain why single-variance models cannot generate the 

hump-shaped pattern for the term structure of VIX futures, we follow Bates (2006) to use the 

Taylor expansion to observe the theoretical VIX futures: 

ॱ௧
ℚሾܸݐܺܫ൅߬ሿ ൎ 100ටॱ௧

ℚൣܣ ൅ ଵܤ ଵܸ,ݐ൅߬൧ ൥1 െ
ॽ೟
ℚൣ஺ା஻భ௏భ,ݐ൅߬൧

଼ቀॱ೟
ℚൣ஺ା஻భ௏భ,ݐ൅߬൧ቁ

మ൩.        ሺC1ሻ 

By the Lemma shown in Appendix A, we have: 

ॱ௧
ℚൣ ଵܸ,௧ାఛ൧ ൌ ൤ߠଵ ൅ ߣ

௩ߤ
ଵߢ
൅ ݁ି఑భఛ ൬ ଵܸ,௧ െ ଵߠ െ ߣ

௩ߤ
ଵߢ
൰൨.																				ሺC2ሻ 

The expectation ॱ௧
ℚൣܣ ൅ ଵܤ ଵܸ,ݐ൅߬൧ is strictly increasing (decreasing) in ߬ when ଵܸ,௧ is 

less (greater) than ߠଵ ൅ ଵ, with the variance ॽ௧ߢ/௩ߤߣ
ℚൣܣ ൅ ଵܤ ଵܸ,ݐ൅߬൧ increasing in the short 

run, thus forcing VIX futures to decrease;49 however, the variance effect disappears in the 

long-run due to the rapidly growing denominator. This explains why single-variance models 

                                                 
48 The RMSREs for our (k, N) = (3,1), (3,2), (3,4), and (3,8) approximations are 3.38%, 0.98%, 0.56% and 
0.44%, whilst those for our (k, N) = (6,1), (6,2), (6,4) and (6,8) approximations are 6.59%, 1.11%, 0.15% and 
0.06%, respectively. For simplicity, we slightly adjust the parameters of Bates (2000) to:	ߢଵ=1, ߠଵ=0.01, 
ଵߪ ଶߢ ,{0.60 ,0.55 ,0.50}∋ ଶߪ ,ଶ=0.02ߠ ,2= ߤ̅ ,1=ߣ ,{0.40 ,0.35 ,0.30}∋ ൌ െ0.05, ߪ௣ =0.1, ଵܸ,௧ =0.010 

ଶܸ,௧=0.015. The parameters estimated by Bates (2000) were ߢଵ=0.91, ߠଵ=0.010989, ߪଵ=0.582, ߢଶ=1.76, 
ߤ̅ ,଴=0.9035ߣ ,ଶ=0.346ߪ ,ଶ=0.022727ߠ ൌ െ0.057, ߪ௣=0.102, ଵܸ,௧=0.00963, and ଶܸ,௧=0.01352.  
49 When ߬ is close to 0, the variance ॽ௧

ℚൣܣ ൅ ଵܤ ଵܸ,௧ାఛ൧ can be simplified as ܤଵଶ൫ߪଵଶ ଵܸ,௧ ൅ ௩ଶ൯߬ߤߣ2	 ൅ ܱሺ߬ሻ. 
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with jumps cannot capture the hump-shaped pattern, even if the SVCJ model uses more 

parameters than the 2-SV model, although the single- variance models with jumps can 

generate the U-shaped pattern when ଵܸ,௧ is smaller than, but close to, ߠଵ ൅ ߣ ఓೡ
఑భ

. In this case, 

the variance effect dominates the short-run mean effect, but is dominated by the long-run 

mean effect. 

 

 ॱ࢚
ℚൣ࡭ ൅ ࢚൧ ॽ࣎ା࢚,૚ࢂ૚࡮

ℚൣ࡭ ൅ ࢚൧ ॱ࣎ା࢚,૚ࢂ૚࡮
ℚሾ࢚ࢄࡵࢂା࣎ሿ 

࢚,૚ࢂ

൏ ૚ࣂ ൅  ૚ࣄ/࢜ࣆࣅ
Increasing in ߬ Increasing in ߬ Upward-sloping/U-shaped

࢚,૚ࢂ

൐ ૚ࣂ ൅  ૚ࣄ/࢜ࣆࣅ

Decreasing in ߬ Increasing in ߬ 
Downward-sloping 
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Table B1.  VIX Option Prices under the SVCJ Model 

This table reports the VIX option prices generated by the exact solution (Exact, as detailed in Appendix B), our 
approximations under the SVCJ model (which cover k standard deviations using N exponential curves) and Lian 
and Zhu (2013). The parameters ሺߢଵ, ;ଵߠ ,ߤ̅ ,௣ߪ ,௩ߤ ;௃ߩ ଵܸ,௧, ,ݎ ߬ሻ which are based on Duffie et al. (2000), are set as 
(3.5, 0.01; –0.1, 0.0001, 0.05, –0.4; 0.008, 0.03, 1), with m denoting the moneyness ܨ/ܭ௧. RMSE and RMSRE 
respectively refer to the root mean-squared error and the root mean-squared relative error. The total computing time 
(Time) is obtained by the Matlab package on Microsoft Windows 7 and based on Intel® Core™ i7-2600 CPU @ 
3.40GHz and 8.00GB RAM.  
 

 Exact ( ݉ ,ଵ, λߪ )
Our Model with k = 3 Our Model with k = 6  

LZ 
N = 1 N = 2 N = 4 N = 8 N = 1 N = 2 N = 4 N = 8 

(0.10,0.4,0.85)  3.6470  3.4182  3.6053  3.6373  3.6401  3.2068  3.5485  3.6389  3.6468    3.6503 

(0.10,0.4,1.00)  2.1320  2.0346  2.1072  2.1224  2.1252  1.9518  2.0915  2.1264  2.1315    2.1367 

(0.10,0.4,1.15)  1.2178  1.1787  1.2034  1.2094  1.2112  1.1594  1.2069  1.2161  1.2175    1.2239 

(0.10,0.5,0.85)  3.9868  3.7426  3.9425  3.9773  3.9801  3.5123  3.8811  3.9776  3.9864    3.9876 

(0.10,0.5,1.00)  2.3735  2.2707  2.3480  2.3641  2.3670  2.1773  2.3304  2.3673  2.3728    2.3763 

(0.10,0.5,1.15)  1.3953  1.3547  1.3812  1.3873  1.3891  1.3293  1.3837  1.3935  1.3949    1.3999 

(0.10,0.6,0.85)  4.3112  4.0555  4.2656  4.3022  4.3049  3.8077  4.2007  4.3014  4.3108    4.3112 

(0.10,0.6,1.00)  2.6050  2.4980  2.5795  2.5960  2.5989  2.3943  2.5601  2.5985  2.6043    2.6073 

(0.10,0.6,1.15)  1.5625  1.5207  1.5488  1.5549  1.5566  1.4890  1.5502  1.5606  1.5620    1.5667 

(0.15,0.4,0.85)  3.5990  3.3884  3.5618  3.5889  3.5922  3.1813  3.5122  3.5912  3.5984    3.6014 

(0.15,0.4,1.00)  2.2428  2.1474  2.2207  2.2339  2.2364  2.0564  2.2052  2.2386  2.2424    2.2473 

(0.15,0.4,1.15)  1.3729  1.3294  1.3585  1.3648  1.3666  1.2996  1.3594  1.3711  1.3726    1.3781 

(0.15,0.5,0.85)  3.9320  3.7065  3.8936  3.9236  3.9269  3.4807  3.8388  3.9247  3.9327    3.9338 

(0.15,0.5,1.00)  2.4722  2.3709  2.4492  2.4634  2.4659  2.2700  2.4316  2.4673  2.4715    2.4749 

(0.15,0.5,1.15)  1.5365  1.4914  1.5222  1.5286  1.5304  1.4562  1.5222  1.5344  1.5360    1.5404 

(0.15,0.6,0.85)  4.2554  4.0156  4.2139  4.2459  4.2493  3.7720  4.1549  4.2459  4.2546    4.2554 

(0.15,0.6,1.00)  2.6928  2.5872  2.6696  2.6844  2.6869  2.4766  2.6502  2.6876  2.6921    2.6950 

(0.15,0.6,1.15)  1.6915  1.6455  1.6776  1.6841  1.6858  1.6047  1.6767  1.6894  1.6910    1.6950 

(0.20,0.4,0.85)  3.5656  3.3705  3.5315  3.5557  3.5590  3.1666  3.4880  3.5580  3.5648    3.5678 

(0.20,0.4,1.00)  2.3463  2.2530  2.3257  2.3377  2.3400  2.1547  2.3110  2.3425  2.3458    2.3498 

(0.20,0.4,1.15)  1.5235  1.4775  1.5096  1.5158  1.5175  1.4380  1.5089  1.5217  1.5231    1.5278 

(0.20,0.5,0.85)  3.8884  3.6773  3.8520  3.8787  3.8822  3.4553  3.8033  3.8801  3.8876    3.8887 

(0.20,0.5,1.00)  2.5649  2.4659  2.5438  2.5566  2.5590  2.3582  2.5269  2.5607  2.5643    2.5670 

(0.20,0.5,1.15)  1.6772  1.6294  1.6633  1.6697  1.6714  1.5849  1.6617  1.6752  1.6767    1.6808 

(0.20,0.6,0.85)  4.2016  3.9775  4.1637  4.1924  4.1960  3.7379  4.1106  4.1928  4.2009    4.2009 

(0.20,0.6,1.00)  2.7760  2.6726  2.7547  2.7681  2.7705  2.5556  2.7359  2.7716  2.7755    2.7776 

(0.20,0.6,1.15)  1.8234  1.7746  1.8098  1.8163  1.8180  1.7250  1.8073  1.8214  1.8230    1.8265 

RMSE 0.1455  0.0278  0.0087  0.0062  0.2899 0.0601 0.0058  0.0006    0.0032
RMSRE 0.0442  0.0097  0.0039  0.0029  0.0867 0.0176  0.0019  0.0002    0.0019 
Time (sec.) 0.04  0.08 0.18 0.35 0.04 0.12 0.31  0.72  25.18

 


